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Preface

This volume contains the papers presented at the 12th International Conference
on Formal Methods of Component Software (FACS 2015). The conference was
held in Niterói, Brazil, from October 14 to October 16, 2015.

FACS is an event devoted to the dissemination of the development and use of
formal methods for the construction of high quality component based systems.
Its first edition took place in Pisa, Italy, September 8 and 9, 2003. Since its 7th
edition, the proceedings have been published by Springer in the Lecture Notes
in Computer Science series as volumes 6921 (2010), 7253 (2011), 7684 (2012),
8348 (2013) and 8997 (2014).

The conference program of FACS 2015 included three invited talks given by
Marting Wirsing (Ludwig-Maximilians-Universität München, Germany), David
Deharbe (Universidade Federal do Rio Grande do Norte, Natal, Brazil) and
Renato Cerqueira (IBM Research Brazil).

A total of 15 research papers were presented at the conference. They are all
included in these proceedings, together with the abstracts of the invited talks.
These contributions were selected from 34 submissions from 23 different coun-
tries: Belgium, Brazil, Canada, China, Colombia, Denmark, France, Germany,
Iceland, Iran, Israel, Italy, Korea, Malaysia, Netherlands, Norway, Pakistan, Por-
tugal, Russian Federation, Sweden, Switzerland, Tunisia, United States of Amer-
ica.

The processes of submission by the authors, paper review, and deliberations
of the program committee were all assisted by EasyChair.

First and foremost, we would to thank all the authors who submitted papers
and showed interest in the subjects of FACS 2015. The invited speakers deserve
our deepest gratitude for leaving their homes to give distingushed talks during
the conference. We also would like to thank the program committee members
and the referees for their hard work in evaluating submissions, suggesting im-
provements and actively discussing abouth them. A special thanks to the local
organization committee: Bruno Lopes, Diego Brandão, Anamaria Moreira, Hugo
Farias, Lucas Monteiro, Lucas Tito, Mateus Alves, and Victor Olimpio. Alessan-
dra Leitão and Michele Christinni from Creact.eve also deserve our gratitude for
their commitment to a high-quality organization in a constrained budget. We
cannot forget thanking our respective families, for their patience while we were
devoting time to FACS instead of being with them. FACS 2015 was organized
by Universidade Federal Fluminense (UFF) and sponsored by the following or-
ganizations, which we thank for their generous support:

– CNPq, the Brazilian Scientific and Technological Research Council,
– CAPES, the Brazilian Higher Education Funding Council, and
– FAPERJ, the Rio de Janeiro State Research Foundation.

October, 2015
Niterói

Peter Csaba Ölveczky
Christiano Braga
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A Component Framework for Simulation-Based
Online Planning

Lenz Belzner, Rolf Hennicker, and Martin Wirsing

Ludwig-Maximilians-Universität München

Abstract. This paper proposes a formal component framework for mod-
eling and assessing autonomous systems operating in domains with large
probabilistic state spaces and high branching factors. The framework
defines components for acting and deliberation, and specifies their in-
teractions. It comprises a mathematical description of specification re-
quirements for autonomous systems. We discuss the role of such a spec-
ification in the context of simulation-based online planning. Moreover,
an approach for relating goals given as bounded LTL formulae to util-
ity functions driving autonomous system adaptation is discussed. The
framework is illustrated with a robotic rescue example.
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A Formal Framework for the Design of Software
Components with the B method

David Déharbe1 and Stephan Merz2

1 Universidade Federal do Rio Grande do Norte, Brazil
david@dimap.ufrn.br

2 INRIA Nancy & LORIA, France
Stephan.Merz@loria.fr

Abstract. B is a formal method used to design software components for
safety-critical systems. The B method starts with the specification of the
component as an abstract specification and proceeds by application of
successive refinements until a detailed, algorithmic implementation has
been derived. In all stages of the methods, the artifacts are subject to for-
mal verification to ensure consistency. We present a formalization frame-
work for the B method based on Labelled Transition Systems (LTS) as
semantics models. We establish the relationship between the generation
of proof obligations mandated by the B method with the preservation
of invariants in LTS, and between the notion of refinement in B and
the concept of simulation in LTS. Finally we formalize, in this context,
the concept of sound B development of a software component. All the
formalization is expressed and machine-checked with Isabelle/HOL.
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Towards Pragmatic Contracts

Renato Cerqueira

IBM Research Brazil
rcerq@br.ibm.com

Abstract. In this presentation, I will revisit some observations made
during the last 20 years, while I was participating in R&D projects re-
lated to component-based development. I will focus on lessons learmed
and on how I ended up taking a path that tries to bring approaches
and techniques from HCI to help in the design and evaluation of pro-
grammable interfaces.
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Combinatory Synthesis of Classes using Feature
Grammars

Jan Bessai1, Boris Düdder1, George T. Heineman2, and Jakob Rehof1

1 Technical University of Dortmund
{jan.bessai, boris.duedder, jakob.rehof}@tu-dortmund.de

2 Worcester Polytechnic Institute
heineman@cs.wpi.edu

Abstract. We describe a method for automatically transforming fea-
ture grammars into type-specifications which are subsequently used to
synthesize a code-generator for a product of a given feature selection.
Feature models are assumed to be given in the form of feature grammars
with constraints, and we present a generic type-theoretic representation
of such grammars. Our synthesis method is based on an extension of
previous work in combinatory logic synthesis, where semantic types can
be superimposed onto native APIs to specify a repository of components
as well as synthesis goals. In our case, semantic types correspond to
feature selections. We use an encoding of boolean logic in intersection
types, which allows us to directly represent logical formulas expressing
complex feature selection constraints. The novelty of our approach is the
possibility to perform retrieval, selection and composition of products in
a unified form, without sacrificing modularity. In contrast to constraint
based methods, multiple selections of a single feature can coexist.

Keywords: Feature Models, Program Synthesis, Type Theory, Combinatory
Logic, Feature Grammar

1 Introduction

Feature models are a hierarchical representation of all products of a software
product line (SPL) which can be distinguished by a set of features. A selection
of features leads to a product configuration. Selections are required to satisfy
imposed constraints, e.g., exclusive choices between features. Various equivalent
representations of feature models exist. Most prominently, feature diagrams have
been introduced by Czarnecki [15]. Feature grammars are a widely known alter-
native that avoids graphical representation issues in large systems [24,6]. Based
on ideas on product line validation by Mannion [26], a representation as proposi-
tional formulas has been independently suggested by Batory [6] and Benavides,
Trinidat and Ruiz [10]. The validity of feature selections w.r.t. constraints can
be obtained automatically in the two last representations, e.g., by using truth
maintenance systems. These approaches can only automatically solve the problem
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how to select features, but not the problem how to combine them into a product.
The latter problem is easy to solve with annotation-based techniques, where all
features are implemented in a single code-base [2]. However, as discussed in [2]
annotation-based approaches bear several disadvantages because of their lack of
modularity. Our approach solves both problems - selection and composition - in
the presence of a component-orientented code-base.

An algorithm for combinatory logic synthesis [21,12] is used to compose
features guided by hierarchy information obtained from feature models. During
composition, types ensure that semantic constraints on selections are observed.
Connecting the domain specific problem space and the implementation specific
solution space via types, the process results in a composition specification suitable
for product code generation. The synthesis algorithm is based on the type
inhabitation problem: given a type environment Γ representing a feature model
and a type τ representing an (incomplete) feature selection, can we generate
a valid composition specification e that is composable from features in Γ and
satisfies the selection τ , noted as Γ ` e : τ? As soon as a feature model and code
generators for each single feature are given, this leads to an automated process,
directly presenting the user with all valid and ready to execute product choices
on the input of her individual feature requirements.

The paper is structured as follows. Feature models and their representations
are discussed in Section 2, and feature grammars (our chosen representation) are
defined by a meta-grammar which is illustrated by an example in Section 2.1. In
Section 3, the theoretical background of the translation into type environments
and of the synthesis problem are highlighted. The translation from feature
grammars is presented in detail, including a soundness proof, in Section 4. The
translation, synthesis and interpretation are applied to an example depicting
resulting code in Section 5. In Section 6 we discuss related work. Section 7
concludes the paper.

Gpl

Driver

Prog Benchmark

Number

Cycle

Connected

StrongC

Transpose StronglyConnected

MSTPrim

MSTKruskal

Shortest Src

DFS BFS

Wgt

Weighted Unweighted

Gtp

Directed Undirected

Fig. 1. Feature Diagram for the GPL example

The contributions of this paper are: a translation of feature models given as
features grammars to type environments, the encoding of constraints as semantic
types, the synthesis and interpretation of composition specifications as program
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code of products (possibly including feature replications), and an application of
translation and synthesis to an example.

2 Feature Models

A feature model is a representation of all products of a software product line
(SPL). Components of feature models are features and constraints organizing
them hierarchically. An instance or member of a feature model is a single product,
i.e. a combination of features satisfying the imposed constraints. We describe
members using feature configurations, specifying which features are selected
(feature selection) and how they are organized wrt. to each other. There are at
least three equivalent ways of specifying feature models. Classically, annotated
feature diagrams are used as a visual specification [25,15]. According to [24] feature
diagrams are a visual representation of feature grammars. In both approaches
constraints are represented as propositional formulas. This insight led to the
idea of representing features as well as their hierarchy as propositional formulas
[6,10]. Standard constraints on features are naturally expressible by logical
connectives: Features that are mandatory (⇔), features that are optional (⇒),
subfeatures (children) (∧), alternative subfeatures (⊕), repeated subfeatures (∨),
and mutually exclusive features (NAND). This unified representation lends itself
to automating feature selection with constraint solvers. However, it does not
provide organizational information needed for a construction specification of the
resulting product. Grammars can provide such information and therefore they
are used in practical code generation tools like GenVoca [8] and AHEAD [5]. We
follow this line of work in our approach towards directly constructing feature
configurations and products from grammars.

2.1 Grammars and GPL Example

Batory [6] explains the stepwise conversion of feature diagrams into feature
grammars, following the ideas presented in [24]. We follow the standard example
of a Graph Product Line (GPL) as presented in [6], allowing for a comparison
between diagrams, grammars and later our approach.

Figure 1 shows the GPL example as a feature diagram. We see that a Graph
Product Line (Gpl) requires a driver consisting of a main procedure (Prog)
together with a benchmark. It can include at least one of the algorithms Number,
Cycle, Connected, StrongC, MSTPrim, MSTKruskal and Shortest. Their details
are given in [6]. A Gpl also includes an optional traversal strategy (DFS or BFS),
an optional weight specification and a mandatory specification for directed or
undirected graphs. Batory [6] explains how to transform the diagram of Figure 1
into the grammar shown in Figure 2. This grammar includes a production for
each feature and explicitly names productions (not visible in the diagram), e.g.,
MainGpl. The grammar also adds constraints, which are imposed on the product
line by semantic requirements, e.g., minimum spanning trees are only meaningful
in weighted graphs. Table 1 assigns a numbered feature vector entry to each

6



Gpl : Driver Alg+ [Src] [Wgt] Gtp :: MainGpl;

Gtp : Directed | Undirected;

Wgt : Weighted | Unweighted;

Src : DFS | BFS;

Alg : Number | Connected | Cycle | MSTPrim | MSTKruskal | Shortest

| Transpose StronglyConnected :: StrongC;

Driver : Prog Benchmark :: DriverProg;

%% // constraints

Number implies Src;

Connected implies Undirected and Src;

StrongC implies Directed and DFS;

Cycle implies DFS;

MSTKruskal or MSTPrim implies Undirected and Weighted;

MSTKruskal or MSTPrim implies not (MSTKruskal and MSTPrim);

Shortest implies Directed and Weighted;

Fig. 2. Feature Grammar and constraints for the GPL example [6]

terminal, non-terminal and pattern name of the grammar. We subsume these
extra-grammatical constraints as the constraint Global(ψ). It is defined as the
conjunction of the constraints listed in the rightmost column of Table 1.

F Feature Name In Global(ψ)

φ0 Directed
φ1 Undirected
φ2 Gtp
φ3 Weighted
φ4 Unweighted
φ5 Wgt
φ6 DFS
φ7 BFS
φ8 Src
φ9 Number φ9 ⇒ φ8

φ10 Connected φ10 ⇒ φ1 ∧ φ8

φ11 Transpose

F Feature Name In Global(ψ)

φ12 Strongly Connected
φ13 Cycle φ13 ⇒ φ6

φ14 MSTPrim φ14 ∨ φ15 ⇒ φ1 ∧ φ3

φ15 MSTKruskal φ14 ∨ φ15 ⇒ ¬(φ14 ∧ φ15)
φ16 Shortest φ16 ⇒ φ0 ∧ φ3

φ17 Alg
φ18 Driver
φ19 Prog
φ20 Benchmark
φ21 MainGpl
φ22 StrongC φ22 ⇒ φ0 ∧ φ6

φ23 DriverProg
Table 1. Feature Vector entries and constraints

We use the GPL example to demonstrate our approach, which will be for-
malized in Section 4. The main idea is to turn the grammar representation into
combinators that build valid parse trees. For the Gpl production we take the
pattern MainGpl as the combinator name and turn each right hand side of the
production into a parameter. Types of iterated non-terminal parameters are
wrapped by List and types of optional basic terms are wrapped by Opt. Other
types just correspond to the name of the non-terminal. Non-optional terminals
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are omitted, because they are constant and thereby do not constitute relevant
parameters. The resulting type encodes a tree (sentence) rooted in MainGpl. Note
that parameters are separated by →, i.e., the combinator is written as a higher
order function in curried form (e.g. (A×B)→ C ∼= A→ (B → C)).

MainGpl : Driver → List(Alg)→ Opt(Src)→ Opt(Wgt)→ Gtp→MainGpl

Given that each parse tree node is linked to source code implementing the
corresponding feature, we can identify the combinator specification with a code
generator interface type. A synthesis algorithm can construct a valid program
by providing valid arguments to all parameters. Values of type MainGpl are
feature configurations, as exemplified in Figure 3. Up to this point, however, the
construction is limited to feature grammars without additional constraints. We
can include them by refining types, adding a vector F(ϕ) of features present in
each parameter and the result.

MainGpl :Driver ∩ F(ϕ1)→ List(Alg) ∩ F(ϕ2)→ Opt(Src) ∩ F(ϕ3)→
Opt(Wgt) ∩ F(ϕ4)→ Gtp ∩ F(ϕ5)→MainGpl ∩ F(ψ)

We read a constraint like Driver ∩ F(ϕ1) as requiring an argument that is
of both types Driver and F(ϕ1). Each variable ϕ,ψ is substituted by a type
representing a feature selection. In the present form, features of arguments and
results are not yet linked. The link can be established by adding a constraint on
how to substitute variables:

MainGpl :Or(ϕ1, ϕ2, ψ1),Or(ϕ3, ψ1, ψ2),Or(ϕ4, ψ2, ψ3),Or(ϕ5, ψ3, ψ)⇒
Driver ∩ F(ϕ1)→ List(Alg) ∩ F(ϕ2)→ Opt(Src) ∩ F(ϕ3)→
Opt(Wgt) ∩ F(ϕ4)→ Gtp ∩ F(ϕ5)→MainGpl ∩ F(ψ)

The constraint Or(ϕ1, ϕ2, ψ1) can be read as ψ1 being substitutable by the
result of a componentwise disjunction of feature selections ϕ1 and ϕ2. All subse-
quent constraints have to be satisfied in conjunction. Finally, valid substitutions
for ψ are constrained to include all feature selections of all arguments. We read
C(α) ⇒ τ as τ being qualified by the constraint C(α), where α is a vector of
variables that might occur in τ . The present formulation still lacks the selec-
tion of features Gpl and MainGpl. We can add them introducing predicates
SetGpl(ψ4, ψ5) and SetMainGpl(ψ5, ψ), which allow all substitutions in which
Gpl (respectively MainGpl) are selected in ψ5 (ψ). Additionally, a constraint
Global(ψ) ensures that global constraints are satisfied.

MainGpl :Global(ψ),Or(ϕ1, ϕ2, ψ1),Or(ϕ3, ψ1, ψ2),

Or(ϕ4, ψ2, ψ3),Or(ϕ5, ψ3, ψ4)

SetGpl(ψ4, ψ5),SetMainGpl(ψ5, ψ)⇒
Driver ∩ F(ϕ1)→ List(Alg) ∩ F(ϕ2)→
Opt(Src) ∩ F(ϕ3)→ Opt(Wgt) ∩ F(ϕ4)→
Gtp ∩ F(ϕ5)→MainGpl ∩ F(ψ)

8



MainGpl DriverProg (addAlg (singletonAlg Cycle) Number)

(someSrcDFS) (noneGtp) Undirected.

Fig. 3. Example for a combinatory term (inhabitant) representing a feature configuration
of the GPL example

To formalize the presented translation in section 4, we need a more detailed
understanding of the type system.

3 Intersection Types

Sentences of feature grammars can be represented by combinatory terms. Such
terms are formed by application of combinators from a repository Γ mapping
combinator names D to their associated types τ .

Definition 1. (Combinatory Term)

E,E′ ::= D | (E E′), D ∈ dom(Γ )

Application is left-associative and we omit unnecessary parenthesis when possible.
An example for a combinatory term is shown in Figure 3. Types of combinators
are formed according to the grammar given in Definition 2.

Definition 2. (Intersection Types)
The set TC is given by:

TC 3 σ, τ, . . . , τn ::= α | ω | τ1 → τ2 | τ1 ∩ τ2 | c(τ1, . . . , τn)

α ranges over type variables and c over polyadic type constructors C. We identify
nullary constructors with constants and omit empty parameter brackets.

Examples for type constructors with non-empty arguments are F(ϕ), List(σ)
and Opt(σ), marking feature vectors of type ϕ and lists or optionals of type σ.

For our type-system TC we choose the subtyping rules of the BCD inter-
section type system [4] and extend them to encompass covariant constructors.
Additionally, different constructors may be related by a customizable relation R
on their names. The extended rules are given in Table 2 with the original rules
in the upper part and the extension in the last three rows. We define equality
σ = τ on types as the transitive symmetric closure of ≤, i.e. σ ≤ τ and τ ≤ σ.

Types are assigned to combinatory terms according to the rules (V ar), (→ E),
(≤) and (∩) defined in Definition 3.
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Description Rule

Subtyping is a preorder σ ≤ σ
if σ1 ≤ σ2 and σ2 ≤ σ3 then σ1 ≤ σ3

ω is the greatest type σ ≤ ω
Functions computing ω equal ω ω ≤ ω → ω

Intersection acts as meet σ ∩ τ ≤ σ σ ∩ τ ≤ τ
if σ ≤ τ1 and σ ≤ τ2 then σ ≤ τ1 ∩ τ2

Intersection distributes over function targets (σ → τ1) ∩ (σ → τ2) ≤ σ → τ1 ∩ τ2
Functions are co- and contravariant if σ2 ≤ σ1 and τ1 ≤ τ2 then

σ1 → τ1 ≤ σ2 → τ2

Constructors are covariant if τ1 ≤ τ ′1, . . . , τn ≤ τ ′n then
c(τ1, . . . , τn) ≤ c(τ ′1, . . . , τ ′n)

Custom subtype relation if R(c, c′) then
on constructor names c(τ1, . . . , τn) ≤ c′(τ1, . . . , τn)

Table 2. Subtyping rules of TC based on BCD [4]

Definition 3. (Type Assignment in TC)

Substitution S
(Var)

Γ, D : τ ` D : S(τ)

Γ ` E : σ σ ≤ τ
(≤)

Γ ` E : τ

Γ ` E : σ → τ Γ ` E′ : σ
(→ E)

Γ ` EE′ : τ

Γ ` E : σ Γ ` E : τ
(∩)

Γ ` E : σ ∩ τ
Given a repository ∆ with constraints, we can reencode it to a repository Γ ,
where constraints are encoded by intersection types.

Definition 4. (Constraint Elimination)

D : C1(α1), . . . , Cn(αn)⇒ τ ∈ ∆ S = {Substitution S |
n∧

i=1

Ci(S(αi))}
(C E)

D :
⋂

S∈S
S(τ) ∈ Γ

An example for a type-derivation is shown in Figure 4, where we assume
∆ = {Shopper : FavoriteColor(α) ⇒ Item ∩ α → Shopper ∩ Happy, Shoes :
Item ∩ α}. First ∆ is translated into Γ = {Shopper : Item ∩ b ∩ r → Shopper ∩
Happy, Shoes : Item ∩ α} using the (C E)-rule, satisfying the constraint
FavoriteColor, which limits α to be substituted only by b ∩ r (blue and red).
In the derivation, combinator Shoes is instantiated twice, with Item ∩ r and
Item ∩ b. Resulting types for Shoes are intersected applying the (∩)-rule. Now
Shopper can be applied to Shoes using (→ E). Finally, the resulting happy
shopper can be upcast to a value of type Happy, by one application of (≤).

For feature vectors F we define constraints operating on vectors (constructed
by ×) of truth-values. We use t for true and f for false. An example feature
vector is F (×(t, f)).
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Γ ` Shopper : Item ∩ b ∩ r → Shopper ∩Happy

S(α) = b

Γ ` Shoes : Item ∩ b

S(α) = r

Γ ` Shoes : Item ∩ r

Γ ` Shoes : Item ∩ b ∩ r
(→ E)

Γ ` Shopper Shoes : Shopper ∩Happy
(≤)

Γ ` Shopper Shoes : Happy

Fig. 4. Example type-derivation for a happy shopper

Predicate Semantic Example
Or(ϕ,ψ, ψ′) ψ′ is the bitwise or of ϕ and ψ Or(×(t, f),×(f, t),×(t, t))
SetXn(ϕ,ψ) The bit corresponding to SetX2(×(t, f),×(t, t))

feature Xn is set to true
Onlyan(ϕ) Only the bit corresponding to Onlya2(×(f, t, f))

feature an is set to true
Empty(ϕ) All bits of ϕ are set to false Empty(×(f, f, f))

The table above lists all defined constraints. The Or constraint restricts its
third argument to be the bitwise or of the first and the second argument. SetXi

constraints are parameterized over a feature Xi. They copy their first argument
and set the bit corresponding to Xi to true. Similarly, Onlyan sets all bits except
the bit corresponding to an to false and the bit for an to true. Empty forces
all bits of its argument to be false. Note that Onlyan(ψ) is syntactic sugar for
Empty(ϕ),Setan(ϕ,ψ).

4 Feature Grammar Translation

Feature Grammars are a formalized graphics-neutral representation of feature
models [6,24]. Their meta-grammar can be summarized by the following produc-
tions:

P → ∅ | P,X : patterns

patterns→ pattern ‘::’ Pat | pattern ‘::’ Pat ‘|’ patterns
pattern, p→ optbasicterm+

optbasicterm, t→ basicterm | ‘[’ basicterm ‘]’

basicterm, b→ a | ref
ref → X | X ‘+’

Here, X is a placeholder for non-terminal symbols, Pat a placeholder for pattern
names and a for terminal symbols. The start symbol for the meta-grammar is P ,
which forms sets of productions of feature grammars. Each production assigns
patterns to a non-terminal. Each pattern is named and consists of at least one,
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possibly optional (indicated by ‘[ ]‘), basic term. Basic terms are terminals or
references. References are either a single non-terminal or a non-terminal with a +,
which marks the non-terminal as repeatable. An instance of this meta-grammar
is given in the GPL example from Figure 2, where pattern names for productions
using exactly one terminal are omitted. Reduction rules to build sentences of a
given feature grammar can be formalized 3. We write the (multi-step) reduction
starting at the production X : patterns in the context of the production set P
to the sentence s ∈ Σ∗ as X : patterns@P −→∗ s.

We can now formalize the translation exemplified in Section 2.1. The transla-
tion relation =⇒ presented in Figure 6 (last page) operates on productions and
translates them to a tuple (R;∆), where R is a subtype relation on constructor
names and ∆ is a repository of typed combinators (cf. Section 3).

Rule (T) creates a combinator for a production consisting of a single terminal
symbol a. The combinator is named after the pattern name Pat. Since terminals
encode constants, it does not take any parameters. Its result is an instance of
the type for trees rooted in the pattern name Pat. Further, the feature vector
F(ψ′) is constrained to include only the features corresponding to the terminal
a, the left-hand side non-terminal X, and the pattern name Pat. Names for
type variables ϕ,ψ, ψ′ are chosen fresh to avoid name conflicts when combining
translation results. The extension of the subtype relation will become clear when
considering the next rule for non-terminal symbols.

Rule (NT) is constructed in an analogous fashion. It operates on productions
including a single non-terminal symbol Y . In contrast to rule (T), the non-terminal
is not constant, therefore the resulting combinator is parameterized over a type
for trees rooted in sentences derived from the non-terminal Y . This also explains
why the subtype relation is extended by Pat ≤ X in each step: types for trees
rooted in Pat are subtypes of X, since all of them may be used in places where
sentences derived from X are required.

Both Rule (PT) and Rule (PNT) operate on patterns consisting of multiple
optional basic terms. In their premises the first and remaining pattern components
are translated recursively, where in rule (PT) the first component is a terminal
symbol and in rule (PNT) the first component is a reference. Constraints are
collected by conjoining them and computing the bitwise or of their results.
Disjunction of results ensures that features required to satisfy constraints on
sub-components remain effective. Special care is taken to update the result type,
which needs to include the feature vector parameterized over the disjunctive result.
To this end, the target ψ3 feature vector of the remaining pattern components
is extracted by tgt and updated by a substitution with the fresh variable ψ4,
restricted to contain the result of the bitwise or of ψ2 and ψ3. Considering
the non-terminal case (PNT), advantages of the curried types become obvious,
since they avoid having to extract and update the arguments of the type of the
remaining pattern components τ .

3 Details available in the technical appendix at http://www-seal.cs.tu-dortmund.

de/seal/downloads/papers/facs15.zip
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Rule (CH) translates choices between patterns, by recursively translating
each subpattern and joining results.

Rule (LI) translates repeated non-terminal symbols Y+. The resulting
combinator for the production is constructed by lifting the parameter of the
combinator for the non-repeated non-terminal symbol Y to a list. Two additional
combinators are added for constructing non-empty lists. Combinator singletonY
takes a value of type Y and returns a singleton list containing just the argument
value. Combinator addY takes a value of type Y and prepends it to its second
argument, which is a non-empty list of values of type Y . Features effective in any
of the list constituents remain effective, due to the use of Or.

Both Rule (OPT) and Rule (OPNT) translate optional basic terms. They
again distinguish between terminal and non-terminal symbols, constructing
their combinators recursively. The resulting combinator for each production
is parameterized over the type corresponding to the basic term lifted to be
optional. Optionals are of type Opt(σ). They are constructed via newly created
combinators someσ and noneσ, reflecting the presence or absence of the optional
value. The somea combinator for terminal symbols again omits its parameter,
since it is constant.

Figure 5 shows the result of applying the formal translation =⇒ to the GPL
example from Figure 2. Note that some redundant Set constraints are produced,
due to the genericity of the translation. Automatic elimination of redundant
constraints can be achieved, but is purely a matter of optimization and is not
discussed in this paper. The Global constraint is added to the combinator
translation of the start symbol MainGpl.

In contrast to preexisting solutions which employ constraint solvers to find
valid feature selections, in combinatory logic terms can occur multiple times in a
solution. This distinction results from the generation of combinatory terms in tree
form instead of computing valuations. Constraints in our system are solved for
each sub-tree. Global constraints are met considering the presence of all features
in the tree, using the disjunction of feature vectors from all subtrees.

4.1 Translation result

Applying the constraint elimination rule (C E) to the result (R;∆) of our
translation, (R;Γ ) can be used as input for a type inhabitation algorithm. Type
inhabitation is the problem of enumerating combinatory terms E (inhabitants)
that satisfy a given goal type τ . We abbreviate the problem by Γ `? : τ . In our
scenario, such an inhabitant can be seen as a valid feature configuration based
on the feature selection specified in its type τ , which consists of the type of a
non-terminal X or pattern-name Pat and a feature vector F(ϕ). Values of type
X correspond to sentences derived from the grammar non-terminal X (i.e. trees
rooted in Pat). The notion of correspondence has been exemplified in the example
presented in Figure 3 and is formalized in Lemma 3. By Lemma 4 inhabitation can
be used to obtain all feature configurations. Theorem 1 (soundness) combines both
of these properties. Lemmas 1 and 2 ensure that the translation is computable
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∆ ={
MainGpl :Global(ψ14), SetGpl(ϕ1, ψ1), SetMainGpl(ψ1, ψ2),

SetGpl(ϕ2, ψ3), SetMainGpl(ψ3, ψ4),

SetGpl(ϕ3, ψ5), SetMainGpl(ψ5, ψ6),

SetGpl(ϕ4, ψ7), SetMainGpl(ψ7, ψ8),

SetGpl(ϕ5, ψ9), SetMainGpl(ψ9, ψ10),

Or(ψ2, ψ4, ψ11),Or(ψ11, ψ6, ψ12),Or(ψ12, ψ8, ψ13),Or(ψ13, ψ10, ψ14)⇒
Driver ∩ F(ϕ1)→ List(Alg) ∩ F(ϕ2)→
Opt(Src) ∩ F(ϕ3)→ Opt(Wgt) ∩ F(ϕ4)→ Gtp ∩ F (ϕ5)→MainGpl ∩ F(ψ14)

addAlg :Or(ψ1, ψ2, ψ3)⇒ Alg ∩ F(ψ1)→ List(Alg) ∩ F(ψ2)→ List(Alg) ∩ F(ψ3)

singletonAlg :Alg ∩ F(ψ1)→ List(Alg) ∩ F(ψ1)

someSrc :Src ∩ F(ϕ)→ Opt(Src) ∩ F(ϕ)

noneSrc :Empty(ϕ)⇒ Opt(Src) ∩ F(ϕ)

someWgt :Wgt ∩ F(ϕ)→ Opt(Wgt) ∩ F(ϕ)

noneWgt :Empty(ϕ)⇒ Opt(Wgt) ∩ F(ϕ)

DriverProg :OnlyProg(ϕ1), SetDriver(ϕ1, ψ1), SetDriverProg(ψ1, ψ2),OnlyBenchmark(ϕ2),

SetDriver(ϕ2, ψ3), SetDriverProg(ψ3, ψ4),Or(ψ2, ψ4, ψ5)⇒ DriverProg ∩ F(ψ5)

Number :OnlyNumber(ϕ), SetAlg(ϕ,ψ), SetNumber(ψ,ψ
′
)⇒ Number ∩ F(ψ

′
)

Connected :OnlyConnected(ϕ), SetAlg(ϕ,ψ), SetConnected(ψ,ψ
′
)⇒ Connected ∩ F(ψ

′
)

Cycle :OnlyCycle(ϕ), SetAlg(ϕ,ψ), SetCycle(ψ,ψ
′
)⇒ Cycle ∩ F(ψ

′
)

StrongC :OnlyTranspose(ϕ1), SetAlg(ϕ1, ψ1), SetStrongC(ψ1, ψ2),OnlyStronglyConnected(ϕ2),

SetAlg(ϕ2, ψ3), SetStrongC(ψ3, ψ4),Or(ψ2, ψ4, ψ5)⇒ StrongC ∩ F(ψ5)

MSTPrim :OnlyMSTPrim(ϕ), SetAlg(ϕ,ψ), SetMSTPrim(ψ,ψ
′
)⇒MSTPrim ∩ F(ψ

′
)

MSTKruskal :OnlyMSTKruskal(ϕ), SetAlg(ϕ,ψ), SetMSTKruskal(ψ,ψ
′
)⇒MSTKruskal ∩ F(ψ

′
)

Shortest :OnlyCycle(ϕ), SetAlg(ϕ,ψ), SetShortest(ψ,ψ
′
)⇒ Shortest ∩ F(ψ

′
)

DFS :OnlyDFS(ϕ), SetSrc(ϕ,ψ), SetDFS(ψ,ψ
′
)⇒ DFS ∩ F(ψ

′
)

BFS :OnlyBFS(ϕ), SetSrc(ϕ,ψ), SetBFS(ψ,ψ
′
)⇒ BFS ∩ F(ψ

′
)

Weighted :OnlyWeighted(ϕ), SetWgt(ϕ,ψ), SetWeighted(ψ,ψ
′
)⇒ Weighted ∩ F(ψ

′
)

Unweighted :OnlyUnweighted(ϕ), SetWgt(ϕ,ψ), SetUnweighted(ψ,ψ
′
)⇒ Unweighted ∩ F(ψ

′
)

Directed :OnlyDirected(ϕ), SetGtp(ϕ,ψ), SetDirected(ψ,ψ
′
)⇒ Directed ∩ F(ψ

′
)

Undirected :OnlyUndirected(ϕ), SetGtp(ϕ,ψ), SetUndirected(ψ,ψ
′
)⇒ Undirected ∩ F(ψ

′
)

}

R = {MainGpl ≤ Gpl,Directed ≤ Gtp, Undirected ≤ Gtp,Weighted ≤ Wgt, Unweighted ≤ Wgt,

BFS ≤ Src,DFS ≤ Src,Number ≤ Alg, Connected ≤ Alg, Cycle ≤ Alg,MSTPrim ≤ Alg,
MSTKruskal ≤ Alg, Shortest ≤ Alg, StrongC ≤ Alg,DriverProg ≤ Driver}

Fig. 5. GPL-Example repository and subtyping relation
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in finite time and produces unique results. We used Ott [29] to formalize the
translation and extract code4 for the automated theorem-prover Coq [11].

Lemma 1. (Translation Confluence)
For all productions X : patterns, if X : patterns =⇒ R1, ∆1 and X : patterns =⇒
R2, ∆2, then R1 = R2 and ∆1 = ∆2.

Proof. By induction on the possible translations, where in each case only one
translation is applicable.

Lemma 2. (Translation Computability)
The translation relation =⇒ is computable.

Proof. For all productions X : patterns only one translation step =⇒ can
be applied. Premises of each translation rule only contain structurally smaller
productions to be translated. By Lemma 1, translations in premises have uniquely
determined results.

Lemma 3. (Translation Correctness)
Let P be a fixed set of productions and ∆ and R be obtained by the union of
each ∆i and Ri, st. Xi : patternsi ∈ P and Xi : patternsi =⇒ Ri;∆i. Let
Γ be obtained from ∆ by applying (C E). There exists a translation function
J K : E → Σ∗, st.

if Γ `M : X, then X : patterns@P −→∗ JMK.

Proof. J K fills in terminal symbols and unpacks lists as well as optionals. The
applicative shape of combinatory terms already matches the structure of sentences.
The side condition holds by induction over possible shapes of M and typing rules.

Lemma 4. (Translation Completeness)
Let P be a fixed set of productions and ∆ and R be obtained by the union of
each ∆i and Ri, st. Xi : patternsi ∈ P and Xi : patternsi =⇒ Ri;∆i. Let
Γ be obtained from ∆ by applying (C E). There exists a translation function
J K−1 : Σ∗ → E, st.

if X : patterns@P −→∗ s, then Γ ` JsK−1 : X.

Proof. J K−1 discards terminal symbols and packs lists as well as optionals. The
structure of sentences already matches the applicative shape of combinatory
terms. The side condition holds by induction over possible shapes of patterns
and derivable sentences.

Theorem 1. (Translation Soundness)
The translation is sound with respect to −→∗ and `.

Proof. Direct consequence of Lemmas 3 and 4.

4 Also available in the aforementioned technical appendix: http://www-seal.cs.

tu-dortmund.de/seal/downloads/papers/facs15.zip
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The inhabitant can be interpreted as a construction specification for a product
specified by a feature configuration. In contrast to feature selections, usually
provided by constraint-solvers, this configuration also provides order information.
In the next section we see how the typed combinators forming inhabitants can be
implemented as code generation functions, maintaining a tight correspondence
to grammar rules.

5 Experiments

Type inhabitation can be performed by an algorithm implemented in the (CL)S
framework [12]. Since all constraints considered in our context have finitely many
solutions, we may precompute them (e.g. using an SMT solver [28] like Z3 [18]).
Precomputed function tables can be encoded as intersection types [4] by (C E).
In the following example we consider a global constraint in which a selection of
feature X forces the selection of feature a, while the grammar only states that a
is optional. We translate the grammar and constraints into a repository ∆ and
postprocess it to a repository Γ , where each function table entry is inserted via
intersection. The translation can be produced automatically by application of
the rules (Var) and (∩).

Global(×(φa, φP , φX)) iff φX implies φa

X : [a] :: P =⇒ {P ≤ X};
{ P :SetX(ϕ,ψ),SetP (ψ,ψ′)⇒ Opt(a) ∩ F(ϕ)→ P ∩ F(ψ′),

somea :Onlya ⇒ Opt(a) ∩ F(ϕ), . . . }
∆ = { P :Global(ψ′),SetX(ϕ,ψ),SetP (ψ,ψ′)⇒

Opt(a) ∩ F(ϕ)→ P ∩ F(ψ′),

somea :Onlya ⇒ Opt(a) ∩ F(ϕ), . . . }
Γ = { P :(Opt(a) ∩ F(×(f, f, f))→ P ∩ F(×(t, t, t))

∩(Opt(a) ∩ F(×(f, f, t))→ P ∩ F(×(t, t, t))

∩(Opt(a) ∩ F(×(f, t, f))→ P ∩ F(×(t, t, t))

∩(Opt(a) ∩ F(×(f, t, t))→ P ∩ F(×(t, t, t))

∩(Opt(a) ∩ F(×(t, f, f))→ P ∩ F(×(t, t, t))

∩ . . . ,
somea :Opt(a) ∩ F(×(t, f, f)), . . . }

We have assigned a Haskell implementation to each of the generated combina-
tors for the GPL example (cf. Figure 5). A functional datatype is assigned to each
type for non-terminal symbols. This datatype serves as a domain model for a
code generator building Java ASTs5. It is presented in Lst. 1.1. The toplevel type
Gpl is a Java compilation unit, i.e. the AST of a full .java file. Implementation
types of combinators are direct translations of the types present in the repository,

5 http://github.com/vincenthz/language-java
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e.g., mainGpl :: Driver -> [Alg] -> Maybe Src -> Maybe Wgt -> Gtp ->

Gpl. The result of the code generation is a Java program that implements a prod-
uct configuration built on top of the preexisting Java graph library JGraphT6.
Only necessary features are selected from the library and a customized minimal
interface is exposed, hiding genericity for unselected features and implementing
benchmark code. Listing 1.2 depicts an excerpt of the generated Java code for a
product. The top-level feature MainGpl is translated to a class containing member
functions for each selected algorithm and a main method for the benchmark
driver program. Combinator implementations, which the interested reader may
find included in the technical appendix, are straightforward AST constructions
and manipulations. It is noteworthy that any language capable of building and
pretty-printing ASTs or supporting string templating could have been used. Here,
we chose Haskell for its support of Java ASTs and the direct mapping from
combinator types to code generator types.

type Gpl = CompilationUnit
data Gtp = Directed | Undirected
data Wgt = Weighted | Unweighted
data Src = DFS | BFS
data Alg = Number | Connected | Cycle | StrongC

| MSTPrim | MSTKruskal | Shor te s t
data Driver = DriverProg

Listing 1.1. Domain Model of a code generator for the GPL example

import java . u t i l . I t e r a t o r ;
. . .
import org . jg rapht . t r a v e r s e . DepthF i r s t I t e r a to r ;
. . .
public c lass MainGpl <V> {

private ListenableUndirectedWeightedGraph<V, DefaultWeightedEdge> graph ;
public DepthF i r s t I t e ra to r<V, DefaultWeightedEdge> g e t I t e r a t o r ( ) { . . . }
public MainGpl ( ) { . . . }
public MainGpl (

ListenableUndirectedWeightedGraph<V, DefaultWeightedEdge> graph ) { . . . }
public Map<V, Integer> number ( ) { . . . }
public Set<DefaultWeightedEdge> mstKruskal ( ) { . . . }
public stat ic void main ( St r ing [ ] a rgs ) { . . . }

}

Listing 1.2. Excerpt of a generated product of the GPL example

The product generated in Lst. 1.2 has been generated by the inhabitation
question Γ `? : Gpl∩F(σ), where σ is the type of a feature vector ×(φ0, . . . , φ23)
in which φ9 (Number) and φ15 (MSTKruskal) is set to t. Unspecified features
are set to the least upper bound of t and f , which is the greatest element ω.
The inhabitation algorithm is free to select or deselect features obeying the
constraints, e.g., F(×(f, t)) ≤ F(×(ω, t)) and F(×(t, t)) ≤ F(×(ω, t)) are both
valid. The resulting inhabitants are all combinatory terms representing valid

6 http://jgrapht.org/
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feature configurations including the selected features. For the question above,
(CL)S automatically synthesizes an inhabitant:

MainGpl DriverProg (addAlg Number (singletonAlg MSTKruskal))

(someSrc DFS) (someWgt Weighted) Undirected

This inhabitant can be directly mapped to the Haskell implementation

mainGpl DriverProg (Number : [ MSTKruskal ] )
( Just DFS) ( Just Weighted ) Undirected

Execution of this function yields a value of type CompilationUnit, the pretty
printing of which generates Lst. 1.2. There are more inhabitants, for example
selecting breadth first search (BFS) instead of depth first search (DFS). (CL)S
generates all these inhabitants iteratively on demand growing in the number of
included features, allowing a user selection of the desired products.

6 Related Work

The book on Feature-Oriented Software Product Lines [2] provides a detailed
overview and useful starting point on the subject. A broader overview is given
in [3]. For a specific review of the automated analysis and formal treatment
of feature models we refer the interested reader to [9]. The line of work we
follow is mainly concerned with automatic synthesis of feature configurations [20].
Starting with the insight that feature models can be represented as propositional
formulas [26,6,10], various techniques have been employed to synthesize feature
selections. They are mostly characterized by the choice of the underlying logic
truth maintenance system. Classically, SAT solving techniques have been used
[6,10,27]. Another important class of approaches is based on unification [14,22].
It allows for flexible definition of user-defined constraints in a Turing-complete
programming language (Prolog). However, structural information about solutions
cannot be provided by the preexisting systems, which is why type inhabitation
plays an important role in our approach. It is not only helpful for constructing
products, but also allows for feature replication. Similar to GenVoca [7], we focus
on grammars, but aim to directly use them for synthesis and code generation. This
is possible by identifying grammar productions with code generator interfaces.
As of the state of this contribution code generators and their compositions are
well-typed wrt. to their implementation language (e.g. Haskell), but not wrt. to
the generated target language. There is an ongoing effort to study the type-safe
composition of product line code in object-oriented languages [30,19]. The use of
type inhabitation to generate object-oriented code has been studied in [23] for
auto-completion features of IDEs. Intersection type inhabitation has been used
to synthesize mixin composition chains [13]. The further exploration of the role
of staging [17] in type-inhabitation driven composition of object-oriented code
[12] is a goal for future research.

The line of work presented in [16,1] also performs synthesis, but with the goal
of extracting feature models from logic specifications. Via the connection between
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diagrams and grammars it might be possible to pipeline these approaches, in
order to use a logic feature specification as a starting point instead of a grammar.
There are however more direct ways to connect logic and type inhabitation via
the curry-howard isomorphism [31]. We chose not to take this path in order to
keep the close connection between code generator APIs and the problem space
as modeled by the feature diagram. More research would be necessary to obtain
this connection in a direct logic based encoding.

7 Conclusion

We presented a method for automatically transforming feature models into type-
specifications for synthesizing code-generators. Such a synthesized code-generator
produces a product of a given partial feature selection obeying feature constraints.
Feature models are given in the form of feature grammars with constraints. Such
grammars are shown to be representable in a generic type-theoretic representation.
Combinatory logic synthesis is used to synthesize composition specifications.
Constraints on specifications are encoded as semantic types. Using (CL)S we
could demonstrate the applicability of our approach and exemplified it for an
implementation of a Graph Product Line.
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3. Apel, S., Kästner, C.: An Overview of Feature-Oriented Software Development.
Journal of Object Technology 8(5), 49–84 (2009)

4. Barendregt, H., Coppo, M., Dezani-Ciancaglini, M.: A Filter Lambda Model and
the Completeness of Type Assignment. Journal of Symbolic Logic 48(4), 931–940
(1983)

5. Batory, D.: Feature-oriented programming and the AHEAD tool suite. In: ICSE
2004. pp. 702–703. IEEE Computer Society (2004)

6. Batory, D.: Feature Models, Grammars, and Propositional Formulas. SPLC 2005
pp. 7–20 (2005)

7. Batory, D., Geraci, B.J.: Composition validation and subjectivity in GenVoca
generators. Software Engineering, IEEE Transactions on 23(2), 67–82 (1997)

8. Batory, D., Singhal, V., Thomas, J., Dasari, S., Geraci, B., Sirkin, M.: The GenVoca
model of software-system generators. IEEE Software 11(5), 89–94 (1994)

9. Benavides, D., Segura, S., Ruiz-Cortés, A.: Automated analysis of feature models
20 years later: A literature review. Information Systems 35(6), 615–636 (2010)

10. Benavides, D., Trinidad, P., Ruiz-Cortés, A.: Automated Reasoning on Feature
Models. In: Advanced Information Systems Engineering. pp. 491–503. Springer
(2005)
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X : patterns =⇒R;∆

fresh(ϕ) fresh(ψ) fresh(ψ′)

X : a :: Pat =⇒ {Pat ≤ X }; {Pat : Onlya(ϕ),SetX (ϕ,ψ),SetPat(ψ,ψ
′)⇒ Pat ∩ F(ψ′)} (T)

fresh(ϕ) fresh(ψ) fresh(ψ′)

X : Y :: Pat =⇒ {Pat ≤ X }; {Pat : SetX (ϕ,ψ),SetPat(ψ,ψ
′)⇒ Y ∩ F(ϕ)→ Pat ∩ F(ψ′)} (NT)

X : t :: Pat =⇒R1; {Pat : Onlya(ϕ),SetX (ϕ,ψ1),SetPat(ψ1, ψ2)⇒ Pat ∩ F(ψ2)}
X : p :: Pat =⇒R2;∆2, Pat : pr ⇒ τ
tgt (pr) = ψ3

fresh(ψ4)

X : t p :: Pat =⇒ {Pat ≤ X };∆2∪
{Pat : Onlya(ϕ),SetX (ϕ,ψ1),SetPat(ψ1, ψ2), pr ,Or(ψ2, ψ3, ψ4)⇒ [ψ3 := ψ4] τ}

(PT)

X : t :: Pat =⇒ R1;∆1, Pat : SetX (ϕ,ψ1),SetPat(ψ1, ψ2)⇒ σ ∩ F(ϕ)→ Pat ∩ F(ψ2)
X : p :: Pat =⇒R2;∆2, Pat : pr ⇒ τ
tgt (pr) = ψ3

fresh(ψ4)

X : t p :: Pat =⇒ {Pat ≤ X };∆1 ∪∆2∪
{Pat : SetX (ϕ,ψ1),SetPat(ψ1, ψ2), pr ,Or(ψ2, ψ3, ψ4)⇒ σ ∩ F(ϕ)→ [ψ3 := ψ4] τ}

(PNT)

X : p :: Pat =⇒ R1;∆1

X : patterns =⇒R2;∆2

X : p :: Pat |patterns =⇒ R1 ∪R2;∆1 ∪∆2

(CH)

X : Y :: Pat =⇒R; {Pat : SetX (ϕ,ψ),SetPat(ψ,ψ
′)⇒ Y ∩ F(ϕ)→ Pat ∩ F(ψ′)}

fresh(ψ1) fresh(ψ2) fresh(ψ3)

X : Y+ :: Pat =⇒ {Pat ≤ X }; {Pat : SetX (ϕ,ψ),SetPat(ψ,ψ
′)⇒ List(Y ) ∩ F(ϕ)→ Pat ∩ F(ψ′)}∪

{addY : Or(ψ1, ψ2, ψ3)⇒ Y ∩ F(ψ1)→ List(Y ) ∩ F(ψ2)→ List(Y ) ∩ F(ψ3)}∪
{singletonY : Y ∩ F(ψ1)→ List(Y ) ∩ F(ψ1)}

(LI)

X : a :: Pat =⇒ {Pat ≤ X }; {Pat : Onlya(ϕ),SetX (ϕ,ψ),SetPat(ψ,ψ
′)⇒ Pat ∩ F(ψ′)}

X : [a] :: Pat =⇒ {Pat ≤ X }; {Pat : SetX (ϕ,ψ),SetPat(ψ,ψ
′)⇒ Opt(a) ∩ F(ϕ)→ Pat ∩ F(ψ′)}∪

{somea : Onlya(ϕ)⇒ Opt(a) ∩ F(ϕ)}∪
{nonea : Empty(ϕ)⇒ Opt(a) ∩ F(ϕ)}

(OPT)

X : ref :: Pat =⇒ {Pat ≤ X };∆∪
{Pat : SetX (ϕ,ψ),SetPat(ψ,ψ

′)⇒ σ ∩ F(ϕ)→ Pat ∩ F(ψ′)}
X : [ref ] :: Pat =⇒ {Pat ≤ X };∆∪

{Pat : SetX (ϕ,ψ),SetPat(ψ,ψ
′)⇒ Opt(σ) ∩ F(ϕ)→ Pat ∩ F(ψ′)}∪

{someσ : σ ∩ F(ϕ)→ Opt(σ) ∩ F(ϕ)}∪
{noneσ : Empty(ϕ)⇒ Opt(σ) ∩ F(ϕ)}

(OPNT)

Fig. 6. Translation rules from grammar productions to type-environments
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Abstract. We study a framework for the specification of architecture
styles as families of architectures involving a common set of types of
components and coordination mechanisms. The framework combines two
logics: 1) interaction logics for the specification of architectures as generic
coordination schemes involving a configuration of interactions between
typed components; 2) configuration logics for the specification of ar-
chitecture styles as sets of interaction configurations. The presented re-
sults build on previous work on architecture modelling in BIP. We show
how propositional interaction logic can be extended into a corresponding
configuration logic by adding new operators on sets of interaction con-
figurations. We provide a complete axiomatisation of the propositional
configuration logic, as well as a decision procedure for checking that an
architecture satisfies given logical specifications. To allow genericity of
specifications, we study first-order and second-order extensions of the
propositional configuration logic. We provide examples illustrating the
application of the results to the characterization of architecture styles.
Finally, we provide an experimental evaluation using the Maude rewrit-
ing system to implement the decision procedure for the propositional
logic.

1 Introduction

Architectures are common means for organizing coordination between compo-
nents in order to build complex systems and to make them manageable. They
depict generic coordination principles between components and embody design
rules that can be understood by all. Architectures allow thinking on a higher
plane and avoiding low-level mistakes. They are a means for ensuring global
coordination properties between components and thus, achieving correctness by
construction [1]. Using architectures largely accounts for our ability to master
complexity and develop systems cost-effectively. System developers extensively
use reference architectures ensuring both functional and non-functional proper-
ties, e.g. fault-tolerant, time-triggered, adaptive, security architectures.

Informally architectures are characterized by the structure of the interac-
tions between a set of typed components. The structure is usually specified as a
relation, e.g. connectors between component ports.

Architecture styles characterize not a single architecture but a family of
architectures sharing common characteristics such as the type of the involved
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components and the topology induced by their coordination structure. Simple
examples of architecture styles are Pipeline, Ring, Master/Slave, Pipe and Fil-
ter. For instance, Master/Slave architectures integrate two types of components,
masters and slaves, such that each slave can interact only with one master.
Figure 1 depicts four Master/Slave architectures involving master components
M1, M2 and slave components S1, S2. Their communication ports are respec-
tively m1, m2 and s1, s2. The architectures correspond to interaction config-
urations:

{
{s1,m1}, {s2,m2}

}
,
{
{s1,m1}, {s2,m1}

}
,
{
{s1,m2}, {s2,m1}

}
and{

{s1,m2}, {s2,m2}
}

. The set {si,mj} denotes an interaction between ports si
and mj . A configuration is a non-empty set of interactions. The Master/Slave
architecture style characterizes all the Master/Slave architectures for arbitrary
numbers of masters and slaves.

m1 m2

s1 s2

M2

S2

M1

S1

{{s1,m1}, {s2,m2}}

m1 m2

s1 s2

M2

S1 S2

M1

{{s1,m1}, {s2,m1}}

m1 m2

s1 s2

M2

S1 S2

M1

{{s1,m2}, {s2,m1}}

m1 m2

s1 s2

M2

S1 S2

M1

{{s1,m2}, {s2,m2}}

Fig. 1: Master/Slave architectures

The paper studies the relation between architectures and architecture styles.
This relation is similar to the relation between programs and their specifications.
As program specifications can be expressed by using logics, e.g. temporal logics,
architecture styles can be specified by configuration logics characterizing classes
of architectures.

First, we propose a propositional configuration logic whose formulas repre-
sent, for a given set of components, the allowed configuration sets. Then, we
introduce first-order and second-order logics as extensions of the propositional
logic. These allow genericity of description as they are defined for types of com-
ponents.

The meaning of a configuration logic formula is a configuration set. A con-
figuration on a set of components represents a particular architecture. Defining
configuration logics requires considering three hierarchically structured semantic
domains:

The lattice of interactions. An interaction a is a non-empty subset of P , the
set of ports of the integrated components. Its execution implies the atomic
synchronization of all component actions (at most one action per component)
associated with the ports of a.

The lattice of configurations. Configurations are non-empty sets of interac-
tions characterizing architectures.

The lattice of configuration sets. Sets of configurations are properties de-
scribed by the configuration logic.

Figure 2 shows the three lattices for P = {p, q}. For the lattice of configura-
tion sets, we show only how it is generated.
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P = {p, q}

(a) I(P ) = 2P (b) C(P ) = 2I(P )\{∅} (c) CS(P ) = 2C(P )\{∅}

Fig. 2: Lattices of interactions (a), configurations (b) and configuration sets (c).

This work consistently extends results on modelling architectures by using
propositional interaction logic [2–4], which are Boolean algebras on the set of
ports P of the composed components. Their semantics is defined via a satisfac-
tion relation between interactions and formulas. An interaction a ⊆ P satisfies a
formula φ (we write a |=i φ) if φ evaluates to true for the valuation that assigns
true to the ports belonging to a and false otherwise. It is characterized exactly
by the formula

∧
p∈a p ∧

∧
p 6∈a p .

Configuration logic is a powerset extension of the interaction logic. Its for-
mulas are generated from the formulas of the propositional interaction logic by
using the operators union, intersection and complementation as well as a coalesc-
ing operator +. To avoid ambiguity, we refer to the formulas of the configuration
logic that syntactically are also formulas of the interaction logics as interaction
formulas. The semantics of the configuration logic is defined via a satisfaction
relation |= between configurations γ = {a1, ..., an} and formulas. An interaction
formula f represents any configuration consisting of interactions satisfying it;
that is γ |= f if, for all a ∈ γ, a |=i f . For set-theoretic operators we take
the standard meaning. The meaning of formulas of the form f1 + f2 is all con-
figurations γ that can be decomposed into γ1 and γ2 (γ = γ1 ∪ γ2) satisfying
respectively f1 and f2. The formula f1 + f2 represents configurations obtained
as the union of configurations of f1 with configurations of f2.

Despite its apparent complexity, configuration logic is easy to use because
of its stratified construction. From interaction logic it inherits the Boolean con-
nectives of conjunction (∧), disjunction (∨) and negation (̄ ). It also uses the
set-theoretic operations of union (t ), complementation (¬) and coalescing (+).
It can be shown that intersection coincides with conjunction.

Formulas of the form f + true, denoted ∼ f , present a particular interest
for writing specifications. Their characteristic configuration set is the largest set
containing configurations satisfying f .

We provide a full axiomatisation of the propositional configuration logic and
a normal form similar to the disjunctive normal form in Boolean algebras. The
existence of such normal form implies the decidability of formula equality and
of satisfaction of a formula by an architecture model.

24



To allow genericity of specifications, we study first-order and second-order
extensions of the propositional configuration logic. First-order logic formulas
involve quantification over component variables. Second-order logic formulas in-
volve additionally quantification over sets of components. Second-order logic is
needed to express interesting topological properties, e.g. the existence of inter-
action cycles.

A complete presentation, with proofs and additional examples, of the results
in this paper can be found in the technical report [22].

The paper is structured as follows. Section 2 recalls some basic facts about
the interaction logic. Section 3 presents the propositional configuration logic,
its properties, the definition of the normal form and the decision procedure.
Section 4 proposes a methodology for the specification of architecture styles.
Section 5 presents first-order and second-order extensions of the logic and illus-
trates their use by several architecture style examples. Section 6 presents the
results of an implementation of the decision procedure in the Maude rewriting
system. Section 7 discusses related work. Section 8 concludes the paper.

2 Propositional interaction logic

The propositional interaction logic (PIL), studied in [2, 3], is a Boolean logic used
to characterize the interactions between components on a global set of ports P .
In this section, we present only the results needed to introduce the propositional
configuration logic (Sect. 3). Below, we assume that the set P is given.

Definition 1. An interaction is a set of ports a ⊆ P such that a 6= ∅.

Syntax. The propositional interaction logic is defined by the grammar:

φ ::= true | p | φ | φ ∨ φ , with any p ∈ P .

Conjunction is defined as usual: φ1∧φ2 def= (φ1 ∨ φ2 ) . To simplify the notation,
we omit it in monomials, e.g. writing pqr instead of p ∧ q ∧ r.

Semantics. The meaning of a PIL formula φ is defined by the following sat-
isfaction relation. Let a ⊆ P be a non-empty interaction. We define: a |=i φ
iff φ evaluates to true for the valuation p = true, for all p ∈ a, and p = false,
for all p 6∈ a. Thus, the semantic domain of PIL is the lattice of configurations
C(P ) = 2I(P )\{∅}, where I(P ) = 2P (Fig. 2).

The operators meet the usual Boolean axioms and the additional axiom∨
p∈P p = true meaning that interactions are non-empty sets of ports.

An interaction a can be associated to a characteristic monomialma =
∧
p∈a p∧∧

p 6∈a p such that a′ |=i ma iff a′ = a.

Example 1. Consider a system consisting of three components: a sender with
port p and two receivers with ports q and r respectively. We can express the
following interaction patterns:
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– Strong synchronization between the components is specified by a single inter-
action involving all components. This is represented by the single monomial
pqr.

– Broadcast defines weak synchronization among the sender and any number
of the receivers:

{
{p}, {p, q}, {p, r}, {p, q, r}

}
, represented by the formula p,

which can be expanded to pq r ∨ pqr ∨ pq r ∨ pqr.

3 Propositional configuration logic

3.1 Syntax and semantics

Syntax. The propositional configuration logic (PCL) is a powerset extension of
PIL defined by the following grammar:

f ::= true | φ | ¬f | f + f | f t f ,
where φ is a PIL formula; ¬, + and t are respectively the complementation,
coalescing and union operators.

We define the usual notation for intersection and implication: f1 u f2
def
=

¬(¬f1 t ¬f2) and f1 ⇒ f2
def
= ¬f1 t f2.

The language of PCL formulas is generated from PIL formulas by using
union, coalescing and complementation operators. The binding strength of the
operators is as follows (in decreasing order): PIL negation, complementation, PIL
conjunction, PIL disjunction, coalescing, union. Henceforth, to avoid confusion,
we refer as interaction formulas to the subset of PCL formulas that syntactically
are also PIL formulas. Furthermore, we will use Latin letters f, g, h for general
PCL formulas and Greek letters φ, ψ, ξ for interaction formulas. Interaction for-
mulas inherit all axioms of PIL.

Semantics. Let P be a set of ports. The semantic domain of PCL is the lattice
of configuration sets CS(P ) = 2C(P )\{∅} (Fig. 2(c)). The meaning of a PCL
formula f is defined by the following satisfaction relation. Let γ ∈ C(P ) be a
non-empty configuration. We define:

γ |= true , always,

γ |= φ , if ∀a ∈ γ, a |=i φ, where φ is an interaction
formula and |=i is the satisfaction relation of
PIL,

γ |= f1 + f2 , if there exist γ1, γ2 ∈ C(P ) \ {∅}, such that
γ = γ1 ∪ γ2, γ1 |= f1 and γ2 |= f2,

γ |= f1 t f2 , if γ |= f1 or γ |= f2,

γ |= ¬f , if γ 6|= f (i.e. γ |= f does not hold).

In particular, the meaning of an interaction formula φ in PCL is the set
2Ia \ {∅}, with Ia = {a ∈ I(P ) | a |=i φ}, of all configurations involving any num-
ber of interactions satisfying φ in PIL.

We say that two formulas are equivalent f1 ≡ f2 iff, for all γ ∈ C(P ) such
that γ 6= ∅, γ |= f1 ⇔ γ |= f2.
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Proposition 1. Equivalence ≡ is a congruence w.r.t. all PCL operators.

Example 2. The Master/Slave architecture style for two masters M1,M2 and
two slaves S1, S2 with ports m1, m2, s1 and s2 respectively characterizes the
four configurations of Fig. 1 as the union:

⊔

i,j∈{1,2}
(φ1,i + φ2,j),

where, for i 6= i′ and j 6= j′, the monomial φi,j = simj si′ mj′ defines a binary
interaction between ports si and mj .

3.2 Conservative extension of PIL operators

Notice that from the PCL semantics of interaction formulas, it follows imme-
diately that PCL is a conservative extension of PIL. Below we extend the PIL
conjunction and disjunction operators to PCL.

PCL intersection is a conservative extension of PIL conjunction.

Proposition 2. φ1 ∧ φ2 ≡ φ1 u φ2, for any interaction formulas φ1, φ2.

Thus, conjunction and intersection coincide on interaction formulas. In the
rest of the paper, we use the same symbol ∧ to denote both operators.

Disjunction can be conservatively extended to PCL with the following se-
mantics: for any PCL formulas f1 and f2,

γ |= f1 ∨ f2 , if γ |= f1 t f2 t f1 + f2. (1)

Proposition 3. For any interaction formulas φ1 and φ2 and any γ ∈ C(P )
such that γ 6= ∅, we have γ |= φ1 ∨ φ2 iff ∀a ∈ γ, a |=i φ1 ∨ φ2.

3.3 Properties of PCL operators

Union, complementation and conjunction operators have the standard set-theoretic
meaning and consequently, they satisfy the usual axioms of propositional logic.

The coalescing operator + combines configurations, as opposed to the union
operator t , which combines configuration sets. Coalescing has the following
properties:

Proposition 4. + is associative, commutative and has an absorbing element

false
def
= ¬true.

Proposition 5. For any formulas f, f1, f2 and any interaction formula φ, we
have the following distributivity results:

1. f ∨ (f1 t f2) ≡ (f ∨ f1) t (f ∨ f2),
2. f + (f1 ∨ f2) ≡ (f + f1) ∨ (f + f2),
3. f + (f1 t f2) ≡ f + f1 t f + f2,
4. φ ∧ (f1 + f2) ≡ (φ ∧ f1) + (φ ∧ f2).
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Associativity of coalescing and union, together with the distributivity of co-
alescing over union, immediately imply the following generalisation of the ex-
tended semantics of disjunction (1).

Corollary 1. For any set of formulas {fi}i∈I , we have
∨

i∈I
fi ≡

⊔

∅6=J⊆I

∑

j∈J
fj ,

where
∑
j∈J fj denotes the coalescing of formulas fj, for all j ∈ J .

Example 3. A configuration γ satisfying the formula f = f1 ∨ f2 ∨ f3 can be
partitioned into γ = γ1 ∪ γ2 ∪ γ3, such that γi |= fi. However, by the semantics
of disjunction, some γi can be empty. On the contrary, the semantics of coalescing
requires all elements of such partition to be non-empty. Hence, in order to rewrite
f without the disjunction operator, we take the union of all possible coalescings
of f1, f2 and f3. Thus, we have f ≡ f1 t f2 t f3 t (f1 + f2) t (f1 + f3) t (f2 +
f3) t (f1 + f2 + f3).

Notice that in general coalescing does not distribute over conjunction.

Example 4. Let P = {p, q} and consider f = p t q, f1 = p and f2 = q. Config-
uration

{
{p}, {q}

}
satisfies (f + f1) ∧ (f + f2), but not f + (f1 ∧ f2).

Coalescing with true presents a particular interest for writing specifications,
since they allow adding any set of interactions to the configurations satisfying
f . Notice that true is not a neutral element of coalescing: only the implication
f ⇒ f + true holds in general.

Definition 2. For any formula f , the closure operator ∼ is defined by putting

∼f def
= f + true. We give ∼ the same binding power as ¬.

Example 5. For P = {p, q, r} the formula f characterizing all the configurations
such that p must interact with both q and r, is f = ∼(pq+ qr) = pq+pr+ true.
Notice that the only constraint imposed by the formula f is that configurations
that satisfy it must contain an interaction pqr or both interactions pq and qr.
Configurations satisfying f can contain any additional interactions.

Proposition 6. For any formula f , we have ∼∼f ≡ ∼f .

The closure operator can be interpreted as a modal operator with existen-
tial quantification. The formula ∼ f characterizes configurations γ, such that
there exists a sub-configuration of γ satisfying f . Thus, ∼ f means “possible
f”. Dually ¬ ∼¬f means “always f” in the following sense: if a configuration
γ satisfies ¬ ∼ ¬f , all sub-configurations of γ satisfy f . Below, we show that,
for an interaction formula φ, holds the equivalence ∼ ¬φ ≡ ¬φ, which implies
¬ ∼¬φ ≡ ¬¬φ ≡ φ. However, this is not true in general. Consider f = ma+mb,
where ma and mb are characteristic monomials of interactions a and b respec-
tively. The only configuration satisfying f is γ = {a, b}. In particular, none of
the sub-configurations {a}, {b} ⊂ γ satisfies f . Thus, ¬ ∼¬(ma +mb) ≡ false.
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Proposition 7. For any f1 and f2, we have

1. ∼(f1 t f2) ≡ ∼f1 t ∼f2 ≡ ∼(f1 ∨ f2),
2. ∼(f1 + f2) ≡ ∼f1 + ∼f2 ≡ ∼f1 ∧ ∼f2.

The following proposition allows us to address the relation between comple-
mentation and negation.

Proposition 8. For any interaction formula φ, we have

φ t φ t (φ + φ) ≡ true .

Notice that the three terms on the left are mutually disjoint and therefore,
for any interaction formula φ, we have

¬φ ≡ φ t (φ+ φ ) ≡ φ + true ≡ ∼φ . (2)

In particular, this means that complementation can also be interpreted as a
modality. Prop. 8 shows that the complementation of an interaction formula φ
represents all configurations that contain φ . Equivalences ¬φ ≡ ∼φ, ¬ ∼φ ≡ φ ,
¬ ∼φ ≡ φ and ∼¬φ ≡ ¬φ, for interaction formulas φ, are direct corollaries of
Prop. 8 and, for the latter, Prop. 6. The following proposition generalises (2) to
coalescings of interaction formulas.

Proposition 9. For any set of interaction formulas Φ, we have

¬
(∑

φ∈Φ
φ
)
≡
⊔

φ∈Φ
φ t ∼

( ∧

φ∈Φ
φ
)
.

Example 6. Consider a formula f = ¬(pq + pr) and a configuration γ |= f .
The PCL semantics requires that γ cannot be split into two non-empty parts
γ1 |= pq and γ2 |= pr. This can happen in two cases: 1) there exists a ∈ γ
such that a does not satisfy neither pq nor pr; 2) one of the monomials is not
satisfied by any interaction in γ. The former case can be expressed as ∼(pq pr )
and the latter as pq t pr . The union of these formulas gives the equivalence
¬(pq + pr) ≡ pq t pr t ∼(pq pr ).

Prop. 9 allows the elimination of complementation. It is also possible to
eliminate conjunction of coalescings by using the following distributivity results
to push it down within the formula.

Proposition 10. For two sets of interaction formulas Φ and Ψ , we have

∑

φ∈Φ
φ ∧

∑

ψ∈Ψ
ψ ≡

∑

ξ∈Φ∪Ψ

(
ξ ∧

∨

(φ,ψ)∈Φ×Ψ
(φ ∧ ψ)

)
.

Example 7. Consider a formula f = (φ1 +φ2) ∧ (φ3 +φ4), where φ1, φ2, φ3 and
φ4 are interaction formulas, and a configuration γ |= f . The semantics requires
that there exists two partitions of γ: γ = γ1∪γ2 and γ = γ3∪γ4, such that γi |= φi
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¬ψ ≡∼ ψ

ψ

∼ φ∧ ∼ ψ ≡ ¬(φ t ψ )

¬(φ⊕ ψ) ≡∼ φ∧ ∼ ψ

¬(φ ∨ ψ) ≡∼ (φ ∧ ψ )

¬(φ ∧ ψ) ≡ ∼ φ⊕ ∼ ψ

ψφ

φ⊕ ψ

φ ∧ ψ

φ

φ ∨ ψ

φ ∧ ψ ∼ (φ ∧ ψ) ≡ ¬(φ ∨ ψ )

∼ ψ ≡ ¬ψ

φ+ ψ

¬(φ+ ψ)
¬φ ≡∼ φ

∼ φ⊕ ∼ ψ ≡ ¬(φ ∧ ψ )

φ ∨ ψ

φ ⊕ ψ

∼ φ ≡ ¬φ

Fig. 3: PCL lattice (the blue arrows represent implications; red dashed and green
solid lines represent, respectively, PIL negation and complementation).

for i ∈ [1, 4]. Considering an intersection γi,j = γi ∩ γj we have γi,j |= φi ∧ φj .
Thus, γ =

⋃
γi,j satisfies φ1φ3 ∨φ1φ4 ∨φ2φ3 ∨φ2φ4 even if some γi,j are empty.

However, disjunction allows configurations such that no interaction satisfy one
of the disjunction terms and consequently some φi. A coalescing of φi allows only
configurations such that each φi is satisfied by at least one interaction. Thus,
the conjunction of these formulas gives the equivalent representation:

f ≡ (φ1φ3 ∨ φ1φ4 ∨ φ2φ3 ∨ φ2φ4) ∧ (φ1 + φ2 + φ3 + φ4)

≡ φ1 ∧ (φ1φ3 ∨ φ1φ4 ∨ φ2φ3 ∨ φ2φ4)

+ φ2 ∧ (φ1φ3 ∨ φ1φ4 ∨ φ2φ3 ∨ φ2φ4)

+ φ3 ∧ (φ1φ3 ∨ φ1φ4 ∨ φ2φ3 ∨ φ2φ4)

+ φ4 ∧ (φ1φ3 ∨ φ1φ4 ∨ φ2φ3 ∨ φ2φ4) .

The PCL lattice is illustrated in Fig. 3. The circle nodes represent interaction
formulas, whereas the red dot nodes represent all other formulas. Notice that
the PCL lattice has two sub-lattices generated by monomials:

– through disjunction and negation (isomorphic to the PIL lattice);
– through union and complementation (disjunction is not expressible).

Notice that coalescing cannot be expressed in any of these two sub-lattices.
Although some formulas involving the closure operator can be expressed in the
second sub-lattice, e.g.∼φ ≡ ¬φ , in general this is not the case, e.g. the formulas
∼(φ ∧ ψ ) and ∼φ t ∼ψ are not part of either sub-lattice. However, the closure
operator is expressible by taking as generators the interaction formulas:

Proposition 11. The lattice generated by interaction formulas through union
and complementation is closed under the closure operator ∼.
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3.4 Deciding equivalence and satisfaction

In this subsection, we present an axiomatisation of the PCL equivalence ≡,
which is sound and complete with respect to the definition in Sect. 3.1. This
axiomatisation allows us to define a normal form for PCL formulas, similar to
the disjunctive normal form in Boolean algebras. The existence of such a normal
form immediately implies the decidability of 1) the equivalence of two PCL
formulas and 2) the satisfaction of a formula by a configuration.

Axioms. PCL operators satisfy the following axioms (for any formulas f , f1
and f2 and any sets of interaction formulas Φ and Ψ):

1. The PIL axioms for interaction formulas.
2. The usual axioms of propositional logic for t , ∧ , ¬.
3. + is associative, commutative and has an absorbing element false.
4. f + (f1 t f2) ≡ f + f1 t f + f2.

5.
∑

φ∈Φ
φ ∧

∑

ψ∈Ψ
ψ ≡

∑

ξ∈Φ∪Ψ

(
ξ ∧

∨

(φ,ψ)∈Φ×Ψ
(φ ∧ ψ)

)
.

6. ¬
(∑

φ∈Φ
φ
)
≡
⊔

φ∈Φ
φ t ∼

( ∧

φ∈Φ
φ
)

.

Theorem 1. The above set of axioms is sound and complete for the equivalence
≡ in PCL.

Applying the axioms above, one can remove or push PCL operators down in
the expression tree of the formula. For instance, Ax. 5 allows one to push the
conjunction down, Ax. 6 removes the complementation.1

Definition 3. A PCL formula is in normal form iff it has the form⊔
i∈I
∑
j∈Ji

∨
k∈Ki,j

mi,j,k, where all mi,j,k are monomials.

Theorem 2. Any PCL formula has an equivalent normal form formula.

Example 8. The following example illustrates the normalization process:

(pq t r) ∧ (pr + ¬q) ≡ (pq t r) ∧ (pr + q + true) // Ax. 6

≡ (pq ∧ (pr + q + true)) t (r ∧ (pr + q + true)) // Ax. 2

≡ ((pq ∧ pr) + (pq ∧ q ) + (pq ∧ true)) // Ax. 5

t ((r ∧ pr) + (r ∧ q ) + (r ∧ true))

≡ (pqr + false + pq) t (pr + rq + r) // Ax. 1

≡ pr + rq + r . // Ax. 2, 3

The first step removes the complementation. Then the application of distribu-
tivity rules pushes conjunction down in the expression tree of the formula, to
the level of monomials. Finally, the formula is simplified, by observing that false
is the absorbing element of coalescing and the identity of union.

1 Full details of the normal form derivation can be found in the technical report [22].
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4 Architecture style specification methodology

The methodology for writing architecture style specifications can be conceptually
simplified due to the fact that an architecture can be considered as a hypergraph
whose vertices are ports and edges are interactions. If a is an interaction then, its
characteristic monomial ma specifies in PCL a single configuration (hypergraph)
that contains only the interaction (edge) a. The formula ∼ma specifies all the
configurations (hypergraphs) that contain the interaction (edge) a. It can be
considered as a predicate on ports expressing their connectivity.

A key idea in writing architecture style specifications is that these can be
expressed as logical relations between connectivity formulas of the form ∼ φ
where φ is an interaction formula. This allows simplification through separation
of concerns: first configurations are specified as the conjunction of formulas on
Boolean variables representing connectivity formulas; then, after simplification,
the connectivity formulas are replaced. This may require another round of sim-
plifications based on specific properties of PCL. This idea is illustrated in the
following example.

Example 9. Consider a system with three ports p, q, r and the following con-
nectivity constraint: If any port is connected to the two others, the latter have
to be connected between themselves. In order to specify this constraint in PCL,
we first define three predicates X = ∼ (pq), Y = ∼ (qr) and Z = ∼ (pr).
The constraint we wish to impose is then specified by the conjunction of the
three implications: (X ∧ Y ⇒ Z) ∧ (Y ∧ Z ⇒ X) ∧ (Z ∧ X ⇒ Y ) ≡
¬Z ∧ ¬Y t ¬Y ∧ ¬X t ¬X ∧ ¬Z t X ∧ Y ∧ Z. Substituting ∼(pq), ∼(qr),
∼(pr) for X, Y , Z, respectively, we obtain

(p ∨ r ) ∧ (q ∨ r ) t (q ∨ r ) ∧ (p ∨ q ) t (p ∨ q ) ∧ (p ∨ r )

t ∼(pq) ∧ ∼(qr) ∧ ∼(pr)

≡ ¬(r ∨ p q ) ∧ ¬(q ∨ p r ) ∧ ¬(p ∨ q r )⇒ ∼(pq)∧ ∼(qr)∧ ∼(pr)

≡ ∼(pr ∨ qr)∧ ∼(qr ∨ pq)∧ ∼(pq ∨ pr)⇒ ∼(pq)∧ ∼(qr)∧ ∼(pr)

≡ ∼(pr)∧ ∼(qr)t ∼(qr)∧ ∼(pq)t ∼(pq)∧ ∼(pr)

⇒ ∼(pq)∧ ∼(qr)∧ ∼(pr)

≡ ∼(pr + qr)t ∼(pq + qr)t ∼(pq + pr)⇒ ∼(pq + qr + pr) .

5 First and second order extensions of PCL

PCL is defined for a given set of ports and a given set of components. In order
to specify architecture styles, we need quantification over component variables.
We make the following assumptions:

– A finite set of component types T = {T1, . . . , Tn} is given. Instances of a
component type have the same interface and behaviour. We write c : T to
denote a component c of type T .

– The interface of each component type has a distinct set of ports. We write
c.p to denote the port p of component c and c.P to denote the set of ports
of component c.
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5.1 First-order configuration logic

Syntax. The language of the formulas of the first-order configuration logic ex-
tends the language of PCL by allowing Boolean expressions on component vari-
ables, universal quantification and a specific coalescing quantifier Σc :T . Let φ
denote any interaction formula:

F ::= true | φ | ∀c :T
(
Φ(c)

)
.F | Σc :T

(
Φ(c)

)
.F | F t F | ¬F | F + F ,

where Φ(c) is some set-theoretic predicate on c (omitted when Φ = true).

Semantics. The semantics is defined for closed formulas, where, for each vari-
able in the formula, there is a quantifier over this variable in a higher nest-
ing level. As above, we assume that the finite set of component types T =
{T1, . . . , Tn} is given. Models are pairs 〈B, γ〉, where B is a set of component
instances of types from T and γ is a configuration on the set of ports P of these
components. For quantifier-free formulas, the semantics is the same as for PCL
formulas. For formulas with quantifiers, the satisfaction relation is defined by
the following rules:

〈B, γ〉 |= ∀c :T
(
Φ(c)

)
..F , iff γ |=

∧

c′:T∈B ∧Φ(c′)
F [c′/c],

〈B, γ〉 |= Σc :T
(
Φ(c)

)
..F , iff γ |=

∑

c′:T∈B ∧Φ(c′)
F [c′/c],

where c′ : T ranges over all component instances of type T ∈ T satisfying Φ and
F [c′/c] is obtained by replacing all occurrences of c in F by c′.

For a more concise representation of formulas, we introduce the notation
](c1.p1, . . . , cn.pn), which expresses an exact interaction, i.e. all ports in the
arguments and only they participate in the interaction:

](c1.p1, . . . , cn.pn)
def
=

n∧

i=1

ci.pi ∧
n∧

i=1

∧

p∈ci.P\{pi}
ci.p

∧
∧

T∈T

(
∀c :T

(
c 6∈ {c1, . . . , cn}

)
.
∧

p∈c.P
c.p
)
. (3)

Example 10. The Star architecture style is defined for a set of components of
the same type. One central component s is connected to every other component
through a binary interaction, and there are no other interactions. It can be
specified as follows:

∃s :T. ∀c :T (c 6= s).
(
∼(c.p s.p) ∧ ∀c′ :T (c′ 6∈ {c, s}). (c′.p c.p )

)

∧
(
∀c :T. ¬ ∼](c.p)

)
. (4)
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The three conjuncts of this formula express respectively the properties: 1)
any component is connected to the center; 2) components other than the center
are not connected; and 3) unary interactions are forbidden.

Notice that the semantics of the first part of the specification, ∀c : T (c 6=
s). ∼ (c.p s.p), is a conjunction of closure formulas. In this conjunction, the
closure operator also allows interactions in addition to the ones explicitly defined.
Therefore, to correctly specify this style, we need to forbid all other interactions
with the second and third conjuncts of the specification. A simpler alternative
specification uses the Σ quantifier:

∃s :T. Σc :T (c 6= s). ](c.p, s.p) . (5)

The ] notation requires interactions to be binary and the Σ quantifier allows
configurations that contain only interactions satisfying ](c.p, s.p), for some c.
Thus, contrary to (4), we do not need to explicitly forbid unary interactions and
connections between non-center components.

Example 11. The Pipes and Filters architecture style [13] involves two types of
components, P and F , each having two ports in and out. Each input (resp.
output) of a filter is connected to an output (resp. input) of a single pipe. The
output of any pipe can be connected to at most one filter. This style can be
specified as follows:

∀f :F. ∃p :P. ∼(f.in p.out) ∧ ∀p′ :P (p 6= p′).
(
f.in p′.out

)
(6)

∧ ∀f :F. ∃p :P. ∼(f.out p.in) ∧ ∀p′ :P (p 6= p′).
(
f.out p′.in

)
(7)

∧ ∀p :P. ∃f :F. ∀f ′ :F (f 6= f ′).
(
p.out f ′.in

)
(8)

∧ ∀p :P.
(
p.in p.out ∧ ∀p′ :P (p 6= p′).

(
p.in p′.in ∧ p.in p′.out

))
(9)

∧ ∀f :F.
(
f.in f.out ∧ ∀f ′ :F (f 6= f ′).

(
f.in f ′.in ∧ f.in f ′.out

))
. (10)

The first conjunct (6) requires that the input of each filter be connected to the
output of a single pipe. The second conjunct (7) requires that the output of each
filter be connected to the input of a single pipe. The third conjunct (8) requires
that the output of a pipe be connected to at most one filter. Finally, the fourth
and fifth conjuncts (9) and (10) require that pipes only be connected to filters
and vice-versa.

5.2 Second-order configuration logic

Properties stating that two components are connected through a chain of interac-
tions, are essential for architecture style specification. For instance, the property
that all components form a single ring and not several disjoint ones can be refor-
mulated as such a property. In [18], it is shown that transitive closure, necessary
to specify such reachability properties, cannot be expressed in the first-order
logic. This motivates the introduction of the second-order configuration logic
with quantification over sets of components.
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This logic further extends PCL with variables ranging over component sets.
We write C : T to express the fact that all components belonging to C are of
type T . Additionally, we denote CT the set of all the components of type T .
Finally, we assume the existence of the universal component type U , such that
any component or component set is of this type. Thus, CU represents all the
components of a model.

Syntax. The syntax of the second-order configuration logic is defined by the
following grammar (φ is an interaction formula):

S ::= true | φ | ∀c :T
(
Φ(c)

)
.S | Σc :T

(
Φ(c)

)
.S | S t S | ¬S | S + S

| ∀C : T
(
Ψ(C)

)
.S | ΣC : T

(
Ψ(C)

)
.S ,

where Φ(c), Ψ(C) are some set-theoretic predicates (omitted when true).

Semantics. Models are pairs 〈B, γ〉, where B is a set of component instances of
types from T and γ is a configuration on the set of ports P of these components.
The meaning of quantifier-free formulas or formulas with quantification only
over component variables is as for first-order logic. We define the meaning of
quantifiers over component set variables:

〈B, γ〉 |= ∀C :T
(
Ψ(C)

)
.S , iff γ |=

∧

C′:T⊆B∧Ψ(C′)

S[C ′/C],

〈B, γ〉 |= ΣC :T
(
Ψ(C)

)
.S , iff γ |=

∑

C′:T⊆B∧Ψ(C′)

S[C ′/C],

where C ′ :T ranges over all sets of components of type T that satisfy Ψ .

Example 12. The Repository architecture style [7] consists of a repository com-
ponent r with a port p and a set of data-accessor components of type A with
ports q. We provide below a list of increasingly strong properties that may be
used to characterize this style:

1. The basic property “there exists a single repository and all interactions in-
volve it” is specified as follows:

∃r :R. (r.p) ∧ ∀r :R. ∀r′ :R. (r = r′),

where the subterm ∀r :R. ∀r′ :R. (r = r′) can be expressed in the logic as
∀r :R. ∀r′ :R(r′ 6= r). false.

2. The additional property “there are some data-accessors and any data-accessor
must be connected to the repository” is enforced by extending the formula as
follows:

∃r :R. (r.p) ∧ ∀r :R. ∀r′ :R. (r = r′)

∧ ∃a :A. true ∧ ∀a :A. ∃r :R. ∼(r.p a.q)
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3. Finally, the additional property “there are no components of other types than
Repository and Data-accessor” is enforced by the formula:

∃r :R. (r.p) ∧ ∃a :A. true ∧ ∀a :A. ∃r :R. ∼(r.p a.q)

∧ ∀r :R. ∀r′ :R. (r = r′) ∧ ∀c :U. (c ∈ CR t c ∈ CA) ,

where the subterm ∀c :U. (c ∈ CR t c ∈ CA) can be expressed as ∀c :U(c 6∈
CR ∧ c 6∈ CA). false.

Example 13. In the Ring architecture style (with only one component type T ),
all components form a single ring by connecting their in and out ports. This
style can be specified as follows:

(
Σc :T. ∃c′ :T (c 6= c′). ](c.in, c′.out)

∧Σc :T. ∃c′ :T (c 6= c′). ](c.out, c′.in)
)

∧ ∀C :T (C 6= U). (∃c :T (c ∈ C). ∃c′ :T (c′ 6∈ C). ∼(c.in c′.out)) .

The second conjunct ensures that there is a single ring and not several disjoint
ones.

6 Implementation of the decision procedure

The PCL decision procedure is based on the computation of the normal form
followed by a decision whether a model satisfies at least one union term of the
normal form or not. For the first- and second-order extensions, satisfaction of
a formula by a model can be decided by reduction to the decision procedure
of PCL. Indeed, given a model, all quantifiers can be effectively eliminated,
transforming a formula into a PCL one. Details of the procedure can be found
in the technical report [22].

We implemented the decision procedure for PCL using Maude 2.0. Maude
is a language and an efficient rewriting system supporting both equational and
rewriting logic specification and programming for a wide range of applications.
In the experimental evaluation we used a set of architecture styles including Star,
Ring, Request-Response pattern [9], Pipes-Filters, Repository and Blackboard
[8]. We used configuration logic formulas (all of them can be found in the techni-
cal report [22]) and models of different sizes, including both correct and incorrect
models. Quantifiers were eliminated externally and the decision procedure was
applied to quantifier-free formulas. All experiments have been performed on a
64-bit Linux machine with a 2.8 Ghz Intel i7-2640M CPU with a memory limit
of 1Gb and time limit of 600 seconds.

Fig. 4 shows the average duration of the decision procedure for the six exam-
ples, as a function of the total number of ports involved in the formula. Simple
architecture styles like Star are decidable within seconds even for 50 ports. For
architecture styles requiring more complex specifications, the number of ports
that can be managed in 600 seconds is smaller. For the Ring architecture the
memory limit is attained for the model with 24 ports.
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Fig. 4: Decision procedure for architecture styles

7 Related work

A plethora of approaches exist for characterizing architecture styles. Patterns [9,
16] are commonly used for this purpose in practical applications. They incorpo-
rate explicit constructs for architecture modelling but, lacking formal semantics,
are not amenable to formal analysis.

Among the formal approaches for representing and analysing architecture
styles, we distinguish two main categories:

– Extensional approaches, where one explicitly specifies all interactions among
the components (cf. the specification (5) of the Star pattern). All connec-
tions, other than the ones specified, are excluded.

– Intentional approaches, where one does not explicitly specify all the con-
nections among the components, but these are derived from a set of logical
constraints, formulating the intentions of the designer (cf. the specification
(4) of the Star pattern). In this case specifications are conjunctions of logical
formulas.

The proposed framework encompasses both approaches. It allows explicit
specification of individual interactions, e.g. by using interaction formulas, as
well as explicit specification of configuration sets, e.g. by using formulas of the
form ∼f .

A large body of literature, originating in [15, 21], studies the use of graph
grammars and transformations [24] to define software architectures. Although
this work focuses mainly on dynamic reconfiguration of architectures, e.g. [6,
19, 20], graph grammars can be used to extensionally define architecture styles:
a style admits all the configurations that can be derived by its defining gram-
mar. The main limitations, outlined already in [21], are the following: 1) the
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difficulty of understanding the architecture style defined by a grammar; 2) the
fact that the restriction to context-free grammars precludes the specification of
certain styles (e.g. trees with unbounded number of components or interactions,
square grids); 3) the impossibility of combining several styles in a homogeneous
manner. To some extent, the latter two are addressed, respectively, by consid-
ering synchronised hyperedge replacement [11], context-sensitive grammars [10,
27] and architecture views [23]. Our approach avoids these problems. Combin-
ing the extensional and intentional approaches allows intuitive specification of
architecture styles. The higher-order extensions of PCL allow imposing global
constraints necessary to specify styles that are not expressible by context-free
graph grammars. Finally, the combination of several architecture styles is defined
by the conjunction of the corresponding PCL formulas.

The proposed framework has similarities, but also significant differences, with
the use of Alloy [17] and OCL [26] for intentional specification of architecture
styles, respectively, in ACME and Darwin [12, 14] and in UML [5]. Our approach
achieves a strong semantic integration between architectures and architecture
styles. Moreover, configuration logic allows a fine characterization of the coor-
dination structure by using n-ary connectivity predicates. On the contrary, the
connectivity primitives in [12, 14, 26] are binary predicates and cannot tightly
characterize coordination structures involving multiparty interaction. To specify
an n-ary interaction, these approaches require an additional entity connected by
n binary links with the interacting ports. Since the behaviour of such entities is
not part of the architecture style, it is impossible to distinguish, e.g., between
an n-ary synchronisation and a sequence of n binary ones.

Both Alloy and OCL rely on first-order logics extended with some form of
the Kleene closure operator that allows to iterate over a transitive relationship.
In particular, this operator allows defining reachability among components. It
is known that the addition of the Kleene closure increases the expressive power
w.r.t. a first-order logic [18]. To the best of our knowledge, the expressiveness
relation between a first-order logic extended with Kleene closure and a corre-
sponding second-order logic remains to be established.

8 Conclusion

The presented work is a contribution to a long-term research program that we
have been pursuing for more than 15 years. The program aims at developing
the BIP component framework for rigorous systems design [25]. BIP is a lan-
guage and a set of supporting tools including code generators, verification and
simulation tools. So far the theoretical work has focused on the study of expres-
sive composition frameworks and their algebraic and logical formalization. This
led in particular, to the formalization of architectures as a generic coordination
schemes applied to sets of components in order to enforce a given global property
[1].

The presented work nicely complements the existing component framework
with logics for the specification of architecture styles. Configuration logic formu-
las characterize interaction configurations between instances of typed compo-
nents. Quantification over components and sets of components allows the gener-
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icity needed for architecture styles. We have shown through examples that con-
figuration logic allows full expressiveness combined with ease of use.

Configuration logic is a powerset extension of interaction logic used to de-
scribe architectures. It is integrated in a unified semantic framework which is
equipped with a decision procedure for checking that a given architecture model
meets given style requirements.

As part of the future work, we will extend our results in several directions.
From the specification perspective, we are planning to incorporate hierarchically
structured interactions and data transfer among the participating ports. From
the analysis perspective, we will study techniques for deciding satisfiability of
higher-order extensions of PCL. Finally, from the practical perspective, we also
plan to extend to the higher-order logics the Maude implementation of the de-
cision procedures. We will also study sublogics that are practically relevant and
for which more efficient decision procedures can be applied.

In parallel, we are currently using configuration logic to formally specify
reference architectures for avionics systems, in a project with ESA.
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Abstract. We propose the use of a bisimulation to quantify dissimilar-
ity between processes: we call it k-bisimulation. Two processes p and q,
whose semantics is given through transition systems, are k-bisimilar if
they differ from at most k moves, where k is a natural number. Roughly
speaking, the k-bisimulation captures the extension of the dissimilarity
between p and q when they are neither strong nor weak equivalent. The
importance of a formal concept of the k-bisimulation can be seen in sev-
eral application fields, such as clone detection, process mining, business-
IT alignment. We propose several heuristics in order to efficiently check
such a bisimulation. The approach can be applied to different specifica-
tion languages (CCS, LOTOS, CSP) provided that the language seman-
tics is based on the notion of transition system. We have implemented a
prototype tool and have conducted experiments on well-known systems
for a proof of concept of our methodology.

1 Introduction and motivation

Equivalence checking is important in many fields including formal verification,
temporal logic, set theory, XML indexing, clone detection, game theory, etc. In
essence, the problem is: given the description of two systems, are the behaviors of
these systems equivalent with respect to some notion of equivalence? A classical
application example is that in which one system describes the implementation,
and another one describes the specification. There are many different points of
view that can be taken in defining equivalence of systems, the different types of
equivalence proposed in literature can be organized, as described in [1], into the
linear-time/branching-time spectrum. Moreover, we can consider as equivalence
checking problems cases where we have to decide some general relation between
systems, not necessarily equivalence. For example, in the field of the process
mining a main point is the so-called conformance checking that aims at the de-
tection of inconsistencies between a predefined process model and an execution
log, and their quantification by the formation of metrics. It is particularly inter-
esting whether the model describes the observed process in a suitable way, i.e.,
its appropriateness. Appropriateness tries to capture the idea of Occam’s razor,
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i.e., one should not increase, beyond what is necessary, the number of entities
required to explain anything.

Milner [2] introduced in the concurrency theory the notion of bisimulation
to support the definition of equivalence for transition systems. Moreover, he de-
fined the notion of observational equivalence for his Calculus of Communicating
Systems (CCS) and thus for transition systems, while Van Benthem [3] used a
similar notion for Kripke Structures [4]. Formal verification environments such
as Spin [5], Concurrency Workbench of the New Century [6] and CADP [7] in-
corporate bisimulation checkers in their tool sets: in this area the notion was
primarily used to minimize the state space of the system representation. Many
works have be done in this direction, [8] is just an example.

In this paper, we present the k-bisimulation that is a bisimulation aiming to
an observational equivalence between processes where a set of moves are hidden.
The importance of a formal concept of the k-bisimulation can be highlighted in
several application fields, such as clone detection, process mining, business-IT
alignment, wiki design and even malware analysis. We propose different heuris-
tics in order to efficiently check such a bisimulation. The approach can be applied
to various specification languages (CCS [2], LOTOS [9], CSP [10]) provided that
the language semantics is based on the notion of transition systems. We have
implemented a prototype tool and have conducted experiments on five popular
systems for a proof of concept of our methodology. Clearly, it is not very in-
teresting to apply k-bisimulation when the two systems have a vastly different
structure. Thus, in order to test our methodology we use small values of k and
try to show that the proposed method works well for processes that are very sim-
ilar. Considering again the process mining context, the appropriateness relation
between systems can be divided into structural and behavioral appropriateness;
both these characteristics are well captured by the concept of bisimulation as
can be seen by examining the transition systems in Fig. 1. Processes A, B and
C include the same computation set, but the process A can be more appropriate
than B and C, because C allows more computations (it is less structurally appro-
priate than A) and B is less compact (it is less behaviorally appropriate) than A.
Bisimulation distinguishes the three processes; k-bisimulation gives a measure
of their dissimilarity. As a first hint of the meaning of the k-bisimulation, we
anticipate that when considering A and C, we can see that they are 3-bisimilar;
while A and B are 2-bisimilar. Thus, if A is the predefined process model and
B and C are possible real processes retrieved from the log, the model describes
B with better appropriateness than C.

2 Preliminaries

Process algebras can be used to describe both implementations of processes and
specifications of their expected behaviors. Therefore, they support the so-called
single language approach to process theory, that is, the approach in which a sin-
gle language is used to describe both actual processes and their specifications.
An important ingredient of these languages is therefore a notion of behavioral
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Fig. 1. Three non bisimilar processes

equivalence. The well-known Milner’s weak equivalence describes how an action
of a process can be matched by a sequence of actions from another one when
considering the same “observational content” (i.e., ignoring internal actions, also
called silent transitions and represented by a special action τ); weak equivalence
is based on the concept of bisimulation and then gives a very meaningful seman-
tics to processes. To develop our method in a specification language independent
way, we assume a set of processes ∆, a set of actions Θ and a function σ that
maps each p ∈ ∆ to a finite set {(p, α1, p1), . . . , (p, αn, pn)} ⊆ ∆×Θ×∆. The ex-
istence of (p, α, p′) ∈ σ(p) means that p can perform the action α and transform

into the process p′; we can also express this capability as p
α−→ p′; we assume the

existence of the special action τ ∈ Θ. From now on, the transition system of p,
namely S(p), is the smallest sub-set of ∆×Θ ×∆ such that:

1. σ(p) ⊆ S(p), and
2. whenever (p′, α, p′′) ∈ S(p), it is σ(p′′) ⊆ S(p) too.

We say also that each (q, α, q′) ⊆ S(p) is a transition of the transition system
and α is the action labelling the transition, that q, q′ are states of the transition
system.

Now we give the definition of weak equivalence [2] in our context: the follow-
ing transition relation, based on σ, permits to ignore silent transitions.

Let p and q be processes in ∆: p
ε

=⇒ q holds if and only if 1 there is a (possibly
empty) sequence of silent transitions leading from p to q. If the sequence is

empty, then p = q. For each action α, it is p
α

=⇒ q iff processes p′ and q′ exist
such that: p

ε
=⇒ p′

α−→ q′
ε

=⇒ q. Thus, p
α

=⇒ q holds if p can reach q by performing
an α action, possibly preceded and followed by sequences of τ actions. For each
action α, α̂ stands for ε if α = τ , and for α otherwise.

Definition 1. (weak equivalence). Let p and q be two processes.

- A weak bisimulation, B, is a binary relation on ∆ such that p B q implies:

(i) p
α−→ p′ implies ∃q′ such that q

α̂
=⇒ q′ with p′ B q′; and

(ii) q
α−→ q′ implies ∃p′ such that p

α̂
=⇒ p′ with p′ B q′

1 We use iff thereafter.
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- p and q are weakly equivalent (p ≈ q) iff there exists a weak bisimulation B
containing the pair (p, q).

Note that we use the notation of ≈ equivalently for processes and for transition
systems.

3 The k-bisimulation

Defining the similarity, or distance, between mathematical objects in some class
is generally an important undertaking, and there is no exception in process al-
gebra setting. Inspired by the Hamming and Levenshtein distance [11,12], we
propose a new bisimulation for processes defined in the process algebra context,
the k-bisimulation, which, to the best of our knowledge, has never been defined
before. In information theory, the Levenshtein distance between two strings is
the number of modifications needed to transform a string into the other, whilst
the Hamming’s distance refers to strings of equal length and measures the num-
ber of positions with corresponding different symbols. When we switch in the
process algebra setting, the k-bisimulation measures the minimum number of
transitions of two transition systems to be relabelled in order to make the two
processes equivalent. It is well known that a large number of graph similarity
measures have been proposed in literature, as, for example, the edit distance
[13]. The overall idea of a graph distance is to define the dissimilarity of two
graphs by the minimum amount of distortion that is needed to transform one
graph into another. Traditionally, the computation of a graph distance is carried
out by means of a tree search algorithm which explores the space of all possible
mappings of the nodes and edges of the first graph to the nodes and edges of the
second graph, performing several heavy graph operations, like edge-insertion,
edge-deletion, node-insertion, node-deletion. Using all these transformations we
could reach strong equivalence between processes. The aim is to obtain equiva-
lence in a simpler way and at a lower cost, so we try to reach weak equivalence
instead. Consequently, the only transformation we perform is the setting of the
labels of some transitions to τ . k-bisimulation captures the dissimilarity between
p and q when they are not weak equivalent. In fact, given a natural number k
and two processes p and q, we say that p and q are k-bisimilar if they differ from
at most k moves.

Note that the use of bisimulation allows us to obtain a measure of dissim-
ilarity that includes also the evaluation of the structure of the two processes
(even if not so accurate as when using branching equivalence [1]) and not only
of the sequences of performed moves. First, we define the notion of k-relabelled
transition system.

Definition 2 (k-relabelled transition system). Let k be a natural number
and r a process, T k(r) is the set of the transition systems obtained relabeling by
τ at most k transitions of the standard transition system of r (denoted in the
following S(r)).
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The notion of k-bisimulation is as follows.

Definition 3 (k-bisimulation). Two processes p and q are k-bisimilar (p ≈k
q) iff there exist a natural number k and two transition systems, t′ ∈ T k(p) and
t′′ ∈ T k(q), such that t′ ≈ t′′.

For example, in Fig. 2, the process p and q are 1-bisimilar. In fact, it is
sufficient to relabel only one move of the process q, i.e., the transition q

a−→ q1
becomes q

τ−→ q1.

Fig. 2. Example of two transition systems not weak bisimilar

The following theorem holds, stating that if p and q are i-bisimilar then they
are also j-bisimilar, for each j > i. Roughly speaking, given a measure k of the
minimum level of dissimilarity between two processes, the same processes can be
made more dissimilar by changing into τ any two equal actions for transitions,
one in a process and one in the other.

Theorem 1. Let p and q be two processes and i, j two natural numbers such
that j ≥ i.

p ≈i q implies p ≈j q
Proof. Straightforward by Definition 3.

Obviously, when k = 0, T 0(p) = {S(p)} for any process p, then 0-bisimulation
between p and q coincides with the weak bisimulation (or with the strong bisim-
ulation in absence of τ labels in the standard transition systems of p and q),
which is an equivalence relation. It is worth noting that, on the contrary, the
k-bisimulation is not in general an equivalence relation: in fact, it is easy to
see that ≈k is reflexive and symmetric, but non transitive. As an example, con-
sider the set of processes ∆ = {p, p1, p2, q, q1, q2, r, r1, r2}; the set of actions
Θ = {a, b, c, d}; and the function σ such that:

p
a−→ p1

b−→ p2; q
c−→ q1

b−→ q2; r
c−→ r1

d−→ r2

It turns out that: p ≈1 q, q ≈1 r, while p 6≈1 r.
Nevertheless, it is possible to prove that k-bisimulation establishes a distance

between processes since the triangle inequality holds (as in the example above).
Resuming, several simple upper and lower bounds can be set for the dissimilarity
between processes measured by the k-bisimulation:

– k is at least the maximum size of the sets (one for each process) of different
actions of the transitions of the two processes;
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– k is at most the size of the biggest between the sets of transitions of the two
processes;

– k can be equal to zero iff if the processes are weak equivalent (or strong
equivalent in absence of τ labels).

4 Computing k-bisimulation

Suppose that we want to check whether p ≈k q. The naive algorithm exhaustively
substitutes all subsets consisting of at most k labels in the transition system of
p with τ (the same for q) and, for each combination of substitutions, checks the
weak equivalence between the transformed processes. It is easy to see that such
algorithm has the complexity of computing all possible subsets containing 0 to
k transitions of S(p) combined with all possible subsets of transitions of S(q)
plus, for each combination, the cost of computing the weak equivalence. More
formally, the maximum number of attempts is given as follows:

Definition 4 (Maximum number of attempts). Let p and q be two pro-
cesses. The maximum number of attempts to compute whether p ≈k q is:



min(k,n)∑

i=0

(
n

i

)
 ∗



min(k,m)∑

i=0

(
m

i

)
 (1)

where n is the number of transitions in S(p) labelled with actions different to τ ,
m is the number of transitions in S(q) labelled with actions different to τ , and(
a
b

)
is the binomial coefficient indexed by a and b.

Thus, exhaustive algorithms cannot be applied in the case of large graphs. We
suggest the use of some heuristics for k-bisimulation checking; obviously, also
computing a heuristic function can be costly. Notwithstanding, heuristics should
be designed with care, otherwise the overhead introduced by the heuristics could
waste the advantages it should provide.

Such heuristics come out by the intuition that some combinations (i.e., some
transitions which belong both to T k(p) and T k(q)) have a higher probability
than others to be the final solution. In this way, we reduce the number of weak
equivalence computations exploring subsets of transitions. Therefore, if the so-
lution exists we can find it with lesser effort - compared with the effort required
by the naive algorithm itself. In fact, the latter explores all the possible attempts
given by Definition 4.

In the following subsections, we present four heuristics to efficiently compute
the k-bisimulation. Based on the aforementioned intuition we consecutively apply
our heuristics, i.e., when a heuristic is not able to establish that two transitions
systems are k-bisimilar, we proceed by applying another one.

Before introducing the heuristics, we have to verify whether p and q cannot
be k-bisimilar. Given the set of transitions of S(p) and S(q), we call, respectively,
Lp and Lq the set of actions different from τ labelling transitions in such sets.
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Fig. 3. k-bisimilar processes

The following theorem holds stating the condition of the non-existence of k-
bisimilarity.

Theorem 2 (Non-existence of k-bisimilarity). Let p and q two processes.
p and q cannot be k-bisimilar when:

k < max{|Lp − (Lp ∩ Lq)|, |Lq − (Lp ∩ Lq)|}︸ ︷︷ ︸
max value

(2)

Proof. Straightforward by Definition 3.

4.1 Preliminary step: Sort based step

The first step is based on comparing the sets of the visible actions that the
processes can perform. If p and q are not k-bisimilar, the primary cause is the
existence of actions that p can perform and q cannot (or vice versa). Theorem 2
suggests that the transitions to be relabelled are all those having actions not in
the set Lp ∩ Lq. Accordingly, the “sort based” step operates as follows.

Definition 5 (Sort based step). Let S(p) and S(q) be two transition systems.
We define:

N = { (r, α, r′) ∈ S(p) | α 6∈ Lq }; M = { (s, α, s′) ∈ S(q) | α 6∈ Lp }.

Roughly speaking, the sort based step sets to τ all the actions which belong to
set Lp, but which do not belong to the set Lq (and vice versa). We apply once
the weak equivalence after simultaneously setting to τ all such actions. If the
processes are weak equivalent then they also are k-bisimilar. After applying the
sort based step, the number of actions set to τ is different for the two transition
systems: for S(p) that number is kp = k−|N | (i.e., we decrement k of the number
of actions set to τ in S(p)), while for S(q) that number is kq = k− |M | (i.e., we
decrement k of the number of actions set to τ in S(q)).

For instance, let us consider the transition systems of Fig. 3a. In order to
make p and q k-bisimilar for some k, it is necessary to change into τ at least the
action c in p, and the action b in q. In this case, it is p ≈1 q with lower bound
k = 1. For the transition systems of Fig. 3b, the two processes are 2-bisimilar
since two labels in p must be changed. Clearly, this heuristics is not useful when
Lp = Lq.
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After this first necessary step, we define several heuristic functions that,
given S(p) and S(q), return two subsets of transitions N of S(p) and M of S(q).
These subsets are used to reduce the number of possible attempts stated by the
Definition 4, since we assume that the probability of relabeling to τ an action of
the triples in N and M is higher than that of relabeling any other triple.

More formally, an heuristic function is generically defined as:

Definition 6 (heuristic function h). Let T1 and T2 be two transition systems,
h(T1, T2) = 〈N,M〉, where N ⊆ T1 and M ⊆ T2.

All the actions of triples which belong to N ∪M represent all the possible
candidates to be set to τ . Thus, we first consider all the combinations given by
Definition 4 where n (resp. m ) is the size of the set N (resp. M) returned by the
heuristic function. For each combination, we apply weak equivalence checking.
Note that, even if applying all the heuristic functions defined in the following
section, we do not necessarily succeed in deciding the k-bisimulation, we may
have to explore all the possible remaining configurations. Now we are ready to
introduce the first heuristics.

4.2 Counterexample based heuristics

When we perform equivalence checking, formal verification tools return a coun-
terexample when the result of the equivalence is false. Typically, counterexamples
are modelled as transition systems and specify the actions that one process can
carry out in a state while the other one in the corresponding state cannot, we
call θ the set of these actions; the “counterexample based” heuristics is built
upon θ .

Definition 7 (Counterexample based heuristics h1). Let S(p) and S(q) be
two transition systems.

– Check whether S(p) ≈ S(q). Let C be the counterexample returned and θ the
set of actions occurring in C such that one process can carry out it in a state
while the other one cannot when reached the corresponding state.

– h1(S(p),S(q)) = 〈N,M〉, where

N = { (r, α, r′) ∈ S(p) | α ∈ θ }; M = { (r, α, r′) ∈ S(q) | α ∈ θ }.
The Counterexample based heuristics uses the result of weak equivalence

checking between the initial processes and creates two subsets of transitions N
of S(p) and M of S(q) based on the generated counterexample. For example,
from the counterexample returned by CADP [7] we can easily individuate θ, since
the terminal states of the diagnostic have additional “error” outgoing transitions
with labels, for example, of the form “Present in p: α” (or ”Absent in p: α”),
indicating that the action α cannot be matched by the other process q. Consider
again the processes q e p in Fig. 2, the “counterexample based” heuristic based
on CADP [7] builds θ = {a}. In fact, after reaching q1 through q

α−→ q1, q1

can perform only the action b, while each state reachable from p using
α̂

=⇒ can
perform also the action a besides b. Accordingly, we create the subsets N =
{(p, a, p1)} and M = {(q, a, q1), (q, a, q)}.
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4.3 Different behaviour based heuristics

This heuristics works by analysing the behaviour of the states of the transition
systems. Let s be a state of a transition system, O(s) denotes the set of actions
labelling ingoing and outgoing transitions of s. More precisely:

Definition 8 (O(s)). Let s be a process in ∆ and T its labelled transition sys-
tem.

O(s) = 〈S1, S2〉 where:

S1 = {α | (r, α, r′) ∈ T and r′ = s, α 6= τ };
S2 = {α | (r, α, r′) ∈ T and r = s, α 6= τ }.

Roughly speaking, S1 (resp. S2) is the set of all ingoing (resp. outgoing) actions
labelling transitions of the state s. We can say that two states, s and s′, have
a “similar behaviour” when O(s) = O(s′). Thus, the heuristics looks for states
that have not a similar behaviour considering all the transitions of S(p) and
S(q). The “different behaviour based” heuristics operates as follows.

Definition 9 (Different behaviour based heuristics h2). Let S(p) and S(q)
be two transition systems. First, we define the sets X and Y as follows:

X = {x state of S(p) | ∀y state of S(q) it holds that O(x) 6= O(y) };
Y = { y state of S(q) | ∀x state of S(p) it holds that O(y) 6= O(x) }.

Now, we define N and M :

N = { (r, α, r′) ∈ S(p), (r′, α, r) ∈ S(p) | r ∈ X };
M = { (s, α, s′) ∈ S(q), (s′, α, s) ∈ S(q) | s ∈ Y }.

Thus, h2(S(p),S(q)) = 〈N,M〉.
The “different behaviour based” heuristics creates O(s) (resp. O(s′)) for each

state of S(p) (resp. S(q)). Then, it collects (in the sets X and Y ) all states s
in a transition system for which there does not exist a state s′ in the other
transition system with a similar behaviour (O(s) = O(s′)) creating two subsets
of transitions N of S(p) and M of S(q). For example, let us consider again the
processes q e p in Fig. 2. The sets of O(s) for the transition system of p and q
are:

O(p) = 〈Ø, {a}〉 O(q) = 〈{a}, {a, b}〉
O(p1) = 〈{a}, {b}〉 O(q1) = 〈{a}, {b}〉
O(p2) = 〈{Ø, {b}〉 O(q2) = 〈{b},Ø〉
O(p3) = 〈{b},Ø〉
O(p4) = 〈Ø,Ø〉 .

It turns out that: X = {p, p2, p4}, while Y = {q}. Thus, we create the
following two subsets M and N as explained above:

N = {(p, a, p1), (p2, b, p3)}; M = {(q, a, q), (q, a, q1), (q, b, q2)}.
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Fig. 4. 1-bisimilar processes

4.4 Jaccard based heuristics

The following heuristic can be used only when we want to check the k-bisimilarity
between two processes with k = 1. It employs the information gained by the
“different behaviour based” heuristic and exploits the dissimilarity between pro-
cesses calculated by means of the Jaccard index [14]. The latter is defined as
follows:

Definition 10 (Jaccard index). Let A and B be two sets, then:

J (A,B) =
|A ∩B|
|A ∪B| (3)

where 0 ≤ J (A,B) ≤ 1.

We use the following notation. If s ∈ ∆ and O(s) = 〈A,B〉, with O′(s) we
denote the set A ∪B. The heuristic operates as follows:

Definition 11 (Jaccard based heuristics h3). Let S(p) and S(q) be two
transition systems. First, we define the sets X and Y as done for the Different
behaviour based heuristic.

X = {x state of S(p) | ∀y state of S(q) it holds that O(x) 6= O(y) };
Y = { y state of S(q) | ∀x state of S(p) it holds that O(y) 6= O(x) }.

Then,

S = { (s1, s2) | s1 ∈ X, s2 ∈ Y and J (O′(s1),O′(s2)) ≥ 0.5 };
N = { (r, α, r′) ∈ S(p), (r′, α, r) ∈ S(p) | ∃(r, s) ∈ S };
M = { (s, α, s′) ∈ S(q), (s′, α, s) ∈ S(q) | ∃(r, s) ∈ S }.

Thus, h3(S(p),S(q)) = 〈N,M〉.
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Roughly speaking, the Jaccard based heuristics creates two subsets of transi-
tions N of S(p) based on X and M of S(q) based on Y . After that, it computes
S which considers the Jaccard index J (A,B) ≥ 0.5. In fact, if J (A,B) < 0.5
the processes are not 1-bisimilar, since it must be k ≥ 1.

For example, let consider the processes q and p in Fig. 4. The states where
O(s) 6= O(s′) are p3 and p6 belonging to S(p) and q3 and q6 belonging to S(q),
i.e., X = {p3, p6} and Y = {q3, q6}. It turns out that

O′(p3) = {d, c},
O′(p6) = {c, a},
O′(q3) = {d} and

O′(q6) = {a, d}.

The Jaccard similarities for these states are

J(p3, q3) = 0.5,

J(p3, q6) = 0.33,

J(p6, q3) = 0.33,

J(p6, q6) = 0.

Then, S = {(p3, q3)}.
Thus, we only have to consider the states p3 and q3 and build the two subsets

N = {(p, d, p3), (p3, c, p6)} and M = {(q, d, q3), (q3, d, q6)}.

4.5 Action occurrence based heuristics

The last heuristics is based on the number of transitions labelled with the same
action belonging to a transition system S(p) compared to another transition
system S(q). The “action occurrence based” heuristics operates as follows.

Definition 12 (Action occurrence based heuristics h4). Let S(p) and S(q)
be two transition systems.

– for each α ∈ Lp, nα is the number of transitions (r, α, r′) ∈ S(p);
– for each α ∈ Lq, mα is the number of transitions (s, α, s′) ∈ S(q).

We define N and M as follows:

N = { (r, α, r′) ∈ S(p) | nα 6= mα };
M = { (s, α, s′) ∈ S(q) | nα 6= mα }.

Thus, h4(S(p),S(q)) = 〈N,M〉.

Roughly speaking, the action occurrence based heuristic compares the num-
ber of transitions labelled with an action α of a process with the number of
transitions labelled with the same action α of the other process. Then, it creates
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the two subsets of transitions N of S(p) and M of S(q) based on the result of
the previous comparison.

For instance, let consider the processes p and q in Fig. 3b. The first process
contains: 2 times a and once for either b or c. Thus, na = 2 and nb = nc = 1.
Whilst the second one yet contains once either b or c, so nb = nc = 1. Thus, we
create two subsets N = {(p, a, pa), (p, a, p2)} and M = ∅.

Fig. 5. Flow chart describing the core of our methodology

4.6 How the heuristics are applied

All the heuristics are independent each other and we may choose any order.
To efficiently figure out if two processes are k-bisimilar, we need to apply the
presented heuristics in a precise order, as shown in Figure 5. Based on empirical
evaluation, we figured out such a order. We apply the next heuristics only when
the previous one is not able to establish that two processes are k-bisimilar. Of
course, when we consider a new heuristics we avoid to call the weak equivalence
checker on the previous already explored space of solutions.

Before deciding the order of the application of each heuristic function, several
experiments were run with different combinations and the presented order gave
the best results.
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Thus, Figure 5 constitutes the core of our methodology. We called it “k-
btH”, i.e., k-bisimulation through Heuristics. Each heuristics re-applies weak
equivalence checking starting from k = 1 until the desired k.

The process starts with two transition systems, i.e., S(p) and S(q) and the
natural number k. First we verify whether the Theorem 2 holds. In this case
the processes are not k-bisimilar. Conversely, if the Theorem 2 does not hold we
apply the preliminary “Sort based” step setting to τ all the transitions which
belong to a process, but which do not belong to the other one (and vice versa).
If the processes are not yet k-bisimilar, the workflow proceeds only if we can
set to τ further actions either in S(p) or in S(q), applying the external min-
imization of the processes. Successively the “Counterexample based” heuristic
is executed. In case the latter is not able to figure out the k-bisimilarity, we
apply the “Jaccard based” heuristics only if k = 1. We keep applying the heuris-
tics “Different behaviour based”, and “Action occurrence based” until either the
processes are k-bisimilar or we apply the “brute force” way, i.e. the “Naive”
algorithm, which constitutes the last chance to check k-bisimilarity and it also is
the most inefficient way to do it. In fact, the “Naive” algorithm explores all the
possible remaining configurations. Notwithstanding, such an algorithm has not
been implemented strictly following Definition 4. Some optimizations have been
introduced in order to further improve the calculation of the k-bisimulation. For
example, we empirically noticed that it is better to examine first the configura-
tions with i = 0, for both processes and then for i = 1 and so on.

5 Application fields of the k-bisimulation

The concept of the k-bisimulation has, in our knowledge, never been proposed
before, but it can be usefully employed in several application fields, such as
semantic data modelling, hyper-text, multimedia, chemical and biological infor-
mation systems. In the following we analyse in more detail the application of
the k-bisimulation in five different fields.

5.1 Clone Detection

Reusing code fragments by copying and pasting with minor modifications is
customary in software development. As a result, software systems often con-
tain sections of code that are similar, i.e. code clones. Clone detection [15] has
been recognized as an important issue in software analysis and it is an active
field of research. In [16] the authors presented the design and implementation
of CD-Form (Clone Detector based on FORmal Methods), a tool targeted at
the detection of Type-2 clones. CD-Form is based on the analysis of the Java
bytecode that is transformed into CCS processes, which are checked for equiva-
lence. The more suitable application field for the k-bisimulation is the detection
of Type-3 clones, where the minimum k gives a measure of the effort to obtain
a clone of maximal length. Clearly, there are other existing measures of Type-3
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clone similarity. However, the use of the k-bisimulation can be useful in the CD-
Form tool that is valuable also in different contexts, apart from clone detection,
in that the CCS translation of Java code can be reused to develop other types
of code analysers.

5.2 Process mining

Process mining is a process management technique that allows the analysis of
business processes using the event logs. The basic idea is to extract knowledge
from event logs recorded by the company information system to retrieve the
model of the performed process and to compare this model against the required
behavior for that type of company. Techniques and tools are defined and several
algorithms have been developed to reconstruct causality from a set of sequences
of events [17], as for example the α-algorithm [18]. k-bisimulation can be used to
evaluate the outputs of different algorithms and to compare how closely related
they are to the real processes [19].

5.3 Business-IT alignment

Business organizations have become heavily dependent on information technol-
ogy (IT) services. The process of alignment is defined as the mutual synchro-
nization of business goals and IT services [20]. Business-IT alignment (BITA)
research deals with the correspondence between the business objectives and the
IT requirements of an enterprise. The alignment between them, maintained over
time, is crucial to the success of an enterprise [21]. Thus, there is a need to
elaborate and evaluate models, techniques and methodologies supporting the
detection and understanding of misalignment between business and technolog-
ical objectives. Recent surveys, however, concluded that in most companies IT
is not aligned with business strategy, therefore this is still a prominent area of
concern. Process mining techniques, aiming at discovering a process model from
the log, can be usefully employed for this purpose. k-bisimulation can help to
evaluate the misalignment between a predefined process model and the software
system that should realize that process in a company.

5.4 Wiki Design

Wikis are becoming a new work tool in enterprises and are widely spreading
everywhere. Indeed, it is important to consider the design and evolution of a
wiki. The k-bisimulation may be exploited to obtain a starting point to design
a wiki or a wiki category, i.e. a set of pages regarding a specific topic. In fact,
wiki designers, engineers and domain experts may be helped comparing an ideal
given category with existing ones, looking for similar structures [22].
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5.5 Malware Analysis

Software that aims to produce damaging intent is defined as malicious code
(or malware). Malware analysis is the process of understanding the behavior
and purpose of a sample (such as a virus, worm, or Trojan horse), in order to
develop effective detection techniques and tools. Signature-based identification
has proven to be ineffective against code obfuscation [23]. Since malware is rare
to change even after a sequence of syntactic code transformations, researchers
have investigated behaviour-based techniques [24]. We claim that after modelling
a malware, the k-bisimulation may constitute a building block to figure out even
subtle differences between malicious and non-malicious behaviours.

6 Experimental Results

In this section we discuss experimental results conducted on six well known
systems with increasing number of actions and states: Demos 13 A1 and De-
mos 13 B22 from CADP [7]; 2-philosophers: the popular dining philosophers
problem with a size of 2 [25]; Diva: a Video on Demand distributed applica-
tion developed at the University of Naples, called DIstributed Video Architecture
(DiVA), and it can be operated both in a WAN or a LAN scenario (a CCS spec-
ification can be found in [26]); CM-ASE: Context Management Application
Service Element (CM-ASE) - a model of the Application Layer of the Aero-
nautical Telecommunications Network, developed by Gurov and Kapron [27];
Railway system (Crail): the system specification given in [25]. This system
describes the British Rail’s Solid State Interlocking which is devoted “to adjust,
at the request of the signal operator, the setting of signal and points in the rail-
way to permit the safe passage of trains”. Note that in Table 1, the number of
transitions of all the case studies include the τ actions.

We have implemented a prototype Java tool and employed the popular CADP
[7] toolbox as equivalence checker and external minimizator tool, for the purpose
of computing the k-bisimulation on the aforementioned systems.

In Table 1 we compare the performance of our methodology “k-btH” - k-
bisimulation through Heuristics - against the direct application of the Maximum
number of attempts, given in Definition 4 and “Naive Algorithm” as described in
Section 4.6. For performance we do not intend execution time, but the number
of attempts to figure out whether the processes are k-bisimilar.

We checked the k-bisimulation with k = 1 and k = 2, since it is useful only
when two processes are very similar. Furthermore, in order to test our method-
ology for each case study we obtained the two processes to compare to randomly
modifying each one. In other words, we modified each process randomly chang-
ing at most one action or two actions (using actions in the sort of the process)
respectively for k = 1 and k = 2. The percentage of reduction was over 90% in all
the experiments and in some case very near to 100%, whilst the execution time
was maximum 10 minutes. It is worth noting that the k-bisimulation is useful

2 http://cadp.inria.fr/demos.html
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Table 1. Experimental results on six well known systems

Case Study Maximum number of k−btH Naive
(transitions, states) attempts: Definition 4 Algorithm

Demos 13 A1
(32, 16) 1055 5 352

Demos 13 B2
(48, 27) 991 11 744

2 Philosophers
(138, 74) 6319 85 6241

Diva
k=1 (418, 213) 99854 142 98590

CM-ASE
(1749, 926) 1763531 36 1143355
CRAIL

(17362, 3616) 130564901 7 1005488

Demos 13 A1
(32, 16) 231580 1748 197593

Demos 13 B2
(48, 27) 279313 5 273350

2 Philosophers
k=2 (138, 74) 9988761 34 3240

Diva
(418, 213) 2477102672 1829 39058
CM-ASE
(1749, 926) 777558453953 3618 930804953

especially when the two processes are very similar. Thus, in order to test our
methodology we check the k-bisimulation with small values of k. Clearly, it is not
very interesting to apply k-bisimulation when the systems have a vastly different
structure. Therefore, the proposed method works well for processes that are very
similar and no advantage is obtained when the systems are not k-bisimilar.

7 Conclusion and Related Work

We presented a methodology to quantify dissimilarities between processes: the
k-bisimulation. The latter takes into account the extension of the unlikeness be-
tween two given processes. In order to efficiently compute the k-bisimulation, we
proposed several heuristics and a workflow to properly apply them. Moreover,
we have implemented a prototype tool for the purpose of testing our methodol-
ogy, obtaining very good results on six well knowns systems. The application of
such bisimulation may involve different contexts from clone detection to process
mining and malware analysis.

In the last few years we can find in the literature different notions of distance
between processes that try to quantify “how far away” is a process to be related
with some other with respect to a certain semantics. Most of them base their def-
initions on the (bi)simulation game that characterizes (bi)simulations between
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processes [28,29]. These distances have a local character since only one of the
successors of each state is taken into account in their computation. Moreover,
these approaches cannot synthesize a system that minimizes a distance from a
given specification. In our work we remove these limitations by means of our
new k-bisimulation. First of all, our k-bisimulation has a global view of the two
processes, being able to hide moves in every point of the two labelled transition
systems representing the two processes, still preserving weak equivalence. Sec-
ondly, we are able to find the minimum k such that two processes are k-bisimilar.
A similar approach can be found in [30,31]. The authors propose a theoretical
study of co-inductive distances and they use quantitative versions of the bisimu-
lation game. We instead move from the theoretical study to practical application,
proposing several heuristics to effectively compute the k-bisimulation. Moreover,
we focus only on the weak bisimulation reaching good results. We plan to ap-
ply k-bisimulation also in other fields, as for example secure information flow
in concurrent systems [32] or for both incremental design and system evolution
scenarios [33].
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Abstract. This paper proposes a framework that automatically checks
and configures data security in Web Services starting from high level
business requirements. We consider BPEL-based composed Web Ser-
vices. BPEL processes and initial security parameters are represented as
component-based models labeled with security annotations. These mod-
els are formal and enable automated analysis and synthesis of security
configurations, under the guidance of the service designer. The security
property considered is the non-interference. The overall approach is prac-
tical since security is defined separately from functional processes and
automatically verified. We illustrate its utility to solve intricate security
problems using a smart grid application.

Keywords: component-based systems, information flow security, non-interference,
dependency flow graph, automated verification.

1 Introduction

With the expansion of Web Services (WS) [1] deployed on the enterprise servers,
cloud infrastructures and mobile devices, Web Service composition is currently a
widely used technique to build complex Internet and enterprise applications. Or-
chestration languages like BPEL [2] allow rapidly developing composed WS by
defining a set of activities binding sophisticated services. Nevertheless, advanced
security skills and tools are required to ensure critical information security. In-
deed, it is important to track data flow and prevent illicit data access by unau-
thorized services and networks; this task can be challenging when the service is
complex or when the composition is hierarchical (the service is composition of
composed services and atomic services). For example, a classical travel organi-
zation WS has to keep a client’s destination secret as messages are exchanged
between different services like travel agency services and the payment service.
Each piece of information depending on the destination, like ticket price, can
lead to the secret disclosure if it is not protected. WS security standards [3,4]

⋆ The research leading to these results has received funding from the European Com-
munity’s Seventh Framework Programme [FP7/2007-2013] under grant agreement
ICT-318772 (D-MILS).

59



provide information flow security solutions for point-to-point inter-service com-
munication but fall short in ensuring end-to-end information flow security in
composed services. Furthermore, the BPEL language does not state any rules
on how to properly apply security mechanisms to services. Generally, developers
manually set up their system security configuration parameters which can be
tedious and error-prone.

Transformation

Syntehsis

graphs

OK

configuration

Dependency

Security analysis

Workflow
(BPEL)

Component Model
Secure

Configuration

counter 
example

KO

Secure

Partial configuration

Fig. 1. Information flow analysis overview with component-based model

Information flow control, particularly the non-interference [5] property check,
is an alternative, more robust, approach than applying access control for point to
point communication. Indeed, it allows tracking information propagation in the
entire system and prevents secret or confidential information from being publicly
released. Information flow control relies on annotating system data with specific
levels of security and uses specific methods for checking non-interference, that is,
absence of leakage between different levels. Nonetheless, providing annotations
and establishing their correctness are equally difficult, especially for distributed
implementations, where only code is available and no higher-level abstractions
exist to give a better view and easier way of correction.

In this paper, we propose a robust tool assisting a designer ensuring end-
to-end information flow security in WS composition. Figure 1 shows a workflow
overview of this tool. The service designer describes in BPEL his process and
defines partial security constraints in a configuration file. The constraints are ex-
pressed as authorization rights, that is, a list of services owners and authorized
readers for a subset of critical data. The BPEL process and the configuration
information are then automatically transformed into a component-based frame-
work. This framework was first adapted to abstract distributed WS orchestration
to a component-based model where all Web services are transformed into atomic
components communicating through interactions by sending and receiving vari-
ables and second, to synthesize security configuration for total system variables
with respect to security constraints by considering all implicit and explicit data
dependencies in the system. The calculated configuration is optimal that is only
data that need to be protected is configured as critical and its security level
is minimal. It is indeed, very important to reduce the security processing over-
head like cryptography encryption and decryption, signature calculation, certifi-
cate verification, etc. In case a total configuration file is generated by the tool,
the system information flow is then considered non-interferent with respect to
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initially defined configuration. Otherwise, the system is interferent and system
designer has to re-define the input initial configuration. As a security advisor,
automated configuration synthesis allows designers, developers and administra-
tors to focus on functional constraints and be confident that their secret data is
protected and people privacy respected. The proposed framework is based on a
formal compositional security model. It is implemented and tested on a smart
grid application. This application shows the practical usage of our tool since
only basic security skills are required and WS standards are respected.

The paper is structured as follows. Section 2 presents the functional and
security aspects of the adopted component-based framework. In Section 3, we
present a practical compositional approach to synthesize security configurations
in component-based system models. In Section 4, we apply this approach to Web
Service orchestration. We consider a transformation from BPEL orchestration
language to the component-based framework and we present the adopted security
annotation model and the tool implementation. In Section 5, we provide a use-
case as illustrative example. Finally, Section 6 discusses the related work and
Section 7 concludes and presents some lines for future work.

2 Component-Based Model

In the scope of this work, we consider systems composed of atomic components
interacting through point-to-point communications. Atomic components are in
form of finite automata extended with data. Communication is synchronous and
directed between one sender and one receiving component. Regarding security,
we consider transitive information flow policies expressed on system variables
and we focus on non-interference properties.

The proposed model is general enough to deal with information flow secu-
rity from a practical point of view for commonly used programming languages
and/or modeling frameworks such as BPEL. Nevertheless, it should be men-
tioned that this model is actually a strict subset of the secureBIP component
model previously introduced in [6,7]. The latter considers additional coordina-
tion mechanisms through multiparty interactions as well as different definitions
of non-interference. For the sake of readability we recall hereafter the key con-
cepts and we re-formulate the key results which are useful in our precise context,
on the restricted subset considered.

2.1 Preliminaries

Let D = {Dj}j∈J be a universal set of data domains (or data types) including
the Boolean domain DBool = {true, false}. Let Expr be an universal set of
operators, that is, functions of the form op : ×m

i=1Dji → Dj0 , where m ≥ 0,
Dji ∈ D for all i = 0,m. We consider typed variables x : D where x denotes

the name of the variable and D , dom(x) ∈ D its domain of values. We define
expressions e as either (i) constant values u ∈ ∪jDj , (ii) variables x : D or
(iii) composed expressions op(e1, ..., em) constructed by applying operators op
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on sub-expressions e1, ..., em such that, their number and their domains match
exactly the domain of op. We denote by use(e) the set of variables occurring
in expression e and by Expr[X] the set of expressions constructed from a set of
variables X and operators in Expr. We denote by Asgn[X] the set of assignments
to variables in X, that is, any subset {(xi, ei)}i∈I ⊆ X ×Expr[X] where (xi)i∈I

are all distinct. An assignment (x, e) is denoted by x := e.
Given a set of variables X, we define valuations V of X as functions V : X →

∪j∈JDj which assign values to variables, such that moreover, V (x) ∈ dom(x),
for all x ∈ X. We denote by V [u/x] the valuation where variable x has assigned
value u and any other variable has assigned the same values as in V . For a subset
Y ⊆ X, we denote by V|Y the restriction of V to variables in Y .

Given an expression e ∈ Expr[X] and a valuation V on X we denote by e(V )
the value obtained by evaluating the expression according to values of X on the
valuation V . Moreover, given an assignment a ∈ Asgn[X] and a valuation V
of X we denote by a(V ) the new valuation V ′ obtained by executing a on V ,
formally V ′(x) = e(V ) iff x := e ∈ a and V ′(x) = V (x) otherwise.

2.2 Operational Model

An atomic component B is a tuple (Q,P,X, T ) where Q is a set of states, X
is a set of local variables, P is a set of ports (or action names) and T is a
set of transitions. We distinguish respectively input ports P in ⊆ P and output
ports P out ⊆ P and we assume they are disjoint, P in ∩ P out = ∅. Every input
or output port p ∈ P in ∪ P out is associated to a unique variable var(p) ∈ X.
Every transition t ∈ T is a tuple (q, p, g, a, q′) where q , src(t), q′ , dst(t) ∈ Q
are respectively the source and the target states, p , port(t) ∈ P is a port,
g , guard(t) ∈ Expr[X] is the enabling condition and a , asgn(t) ∈ Asgn[X]
is the assignment of t.

In our model, atomic components have exclusive access on their variables.
Interactions between components take place only through explicit input/output
binary connectors. A connector defines a static communication channel from
one output port pout of a sender component B to an input port pin in a receiver
component B′ 6= B. The connector is denoted by the tuple (pout, pin). Intuitively,
when communication takes place, the value of var(pout) is assigned to var(pin).

Figure 2 provides examples of atomic components. The Producer component
contains two states l1 and l2 and one output port out. The transition labelled
with port produce takes place only if the guard [w ≤ 3] is true. Then, the variable
x is updated by executing the assignment x := 3x+ 1.

We denote by Γ (B1, ..., Bn) the composition of a set of atomic components
Bi = (Qi, Xi, Pi, Ti)i=1,n through a set of connectors Γ . For the sake of simplic-
ity, we tacitly assume that every input and output port of every Bi is used in
exactly one connector in Γ . The operational semantics of a composition is defined
as a labelled transition system (Q,A,−→) where states correspond to system con-
figurations and transitions to internal steps or communication through connec-
tors. A system configuration 〈q,V 〉 in Q where q = (q1, ..., qn), V = (V1, ..., Vn)
is obtained from component configurations (qi, Vi) where qi ∈ Qi and Vi is a
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Fig. 2. A Producer-Buffer-Consumer example

valuation of Xi, for all i = 1, n. The set of labels A is defined as Γ ∪{τ}, that is,
either communication on connectors or internal action (τ). The set of transitions
−→⊆ Q×A×Q between configurations are defined by the following two rules:

Inter

(qi, pi, gi, ai, q
′
i) ∈ Ti pi 6∈ P in

i ∪ P out
i

gi(Vi) = true V ′
i = ai(Vi) ∀k 6= i. (q′k, V

′
k) = (qk, Vk)

〈(q1, ..., qn), (V1, ..., Vn)〉 τ−→ 〈(q′1, ..., q′n), (V ′
1 , ..., V

′
n)〉

Comm

(pouti , pinj ) ∈ Γ (qi, p
out
i , gi, ai, q

′
i) ∈ Ti (qj , p

in
j , gj , aj , q

′
j) ∈ Tj

gi(Vi) = gj(Vj) = true u = Vi(var(p
out
i )) V ′

i = ai(Vi)
V ′
j = aj(Vj [u/var(p

in
j )]) ∀k 6= i, j. (q′k, V

′
k) = (qk, Vk)

〈(q1, ..., qn), (V1, ..., Vn)〉
pout
i pin

j−−−−−→ 〈(q′1, ..., q′n), (V ′
1 , ..., V

′
n)〉

The system evolves either by performing asynchronously an internal step of some
component Bi (Inter rule) or by performing a synchronous communication
between two components Bi, Bj involving respectively ports pouti , pinj related
by a connector in Γ (Comm rule). Transitions are executed only if guards are
evaluated to true in the current configuration. As usual, next configurations are
obtained by taking into account variable assignments and communication.

A run ρ of the system Γ (B1, ..., Bn) is a finite sequence 〈q0,V 0〉 α1 〈q1,V 1〉
α2 ... αℓ 〈qℓ,V ℓ〉 where 〈qk−1,V k−1〉 αk−−→ 〈qk,V k〉 for all k = 1, ℓ. The set of
all runs starting from a configuration 〈q0,V 0〉 are denoted by Runs〈q0,V 0〉.

Finally, for a run ρ and a subset of variables Y ⊆ ∪n
i=1Xi we denote by

tr(ρ, Y ) the trace of ρ with respect to Y . Traces represent what is actually
observable from a trace by having access to variables in Y . They are inductively
defined for runs as follows:

tr(〈q,V 〉, Y ) = 〈q,V |Y 〉

tr(〈q,V )〉 α ρ′, Y ) =





tr(ρ′, Y )
if α = τ and tr(ρ′, Y ) starts with 〈q,V |Y 〉

〈q,V |Y 〉 α tr(ρ′, Y )
otherwise
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where V |Y denotes (V1|Y1
, ..., Vn|Yn

) for Yi = Y ∩Xi, for all i = 1, n. Finally, for
a trace tr(ρ, Y ) we define the set Enable(tr(ρ, Y )) of configurations which are
enabling the same trace on alternative runs, formally:

Enable(tr(ρ, Y )) = { 〈q0,V 0〉 | ∃ρ′ ∈ Runs〈q0,V 0〉, tr(ρ, Y ) = tr(ρ′, Y ) }

2.3 Security Model

We consider transitive information flow policies expressed on system variables
and we focus on the non-interference properties. We restrict ourselves to con-
fidentiality and we ensure that no illegal flow of information exists between
variables having incompatible security levels.

Formally, we represent security domains as finite lattices (S,≤) where S de-
notes the security levels and ≤ the flows to relation. For a level s, we denote
by [−, s] (resp. by [s,−]) the set of levels allowed to flow into (resp. from) s.
Moreover, for any subset S ⊆ S, we denote by ⊔S (resp. ⊓S) the unique least
upper (resp. greatest lower) bound of S according to ≤.

Let Γ (B1, ..., Bn) be a system and let X = ∪n
i=1Xi (resp. P = ∪n

i=1Pi) be the
set of all components variables (resp. ports). A security annotation on variables is
a function σ : X → S which associates security levels to variables. We denote by
σ−1 : 2S → 2X the pre-image of σ, defined as σ−1(S) = {x ∈ X | σ(x) ∈ S}, for
all S ⊆ S. For any s, define Ys = σ−1([−, s]), the set of variables having security
levels at most s. For a security level s, we denote by ≈s the indistinguishability
relation on configurations at level s defined by 〈q1,V 1〉 ≈s 〈q2,V 2〉 iff q1 = q2

and V 1|Ys
= V 2|Ys

. That is, configurations are identical on control states and
up to variables with security levels at most s. For a set of configurations C ⊆ Q,
we denote by [[C]]s = {c′ ∈ Q | ∃c ∈ C. c′ ≈s c}. We are now ready to define the
security criterion for an annotated system.

Definition 1. A security annotation σ is secure for a system Γ (B1, ..., Bn) and
initial configurations Init iff ∀s ∈ S. ∀〈q0,V 0〉 ∈ Init . ∀ρ ∈ Runs〈q0,V 0〉

Enable(tr(ρ, Ys)) = [[Enable(tr(ρ, Ys))]]s

Intuitively, the definition states that for any security level s, no additional infor-
mation is obtained by observing traces with respect to variables Ys behind the
equivalence ≈s. Or, any two indistinguishable initial states enable precisely the
same set of traces with respect to Ys. If this would not be the case for let say,
(q0,V 0) ≈s (q0,V

′
0), then one could find a run ρ0 ∈ Runs〈q0,V 0〉 such that

no run ρ′ ∈ Runs〈q0,V
′
0〉 had the same trace with respect to Ys. But then, this

means (q0,V 0) ∈ Enable(tr(ρ0, Ys)) whereas (q0,V
′
0) 6∈ Enable(tr(ρ0, Ys)). and

consequently Enable(tr(ρ, Ys)) $ [[Enable(tr(ρ, Ys))]]s.
The following proposition defines static conditions ensuring that a security

annotation on variables is secure for a system.

Proposition 1. A security annotation σ is secure for a system Γ (B1, ..., Bn)
with an arbitrary non-empty set of initial configurations Init whenever
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– all local transitions t in components Bi are sequentially consistent
∀(x := e) ∈ asgn(t). ∀y ∈ use(e) ∪ use(guard(t)). σ(y)≤σ(x)

– all components Bi are port deterministic i.e., for all transitions t1, t2
src(t1) = src(t2) ∧ port(t1) = port(t2) ⇒ guard(t1) ∧ guard(t2) ≡ false

and moreover, there exists a security annotation on ports ς : P → S such that:

– ports of all causal local transitions t1, t2 have increasing levels of security
dst(t1) = src(t2) ⇒ ς(port(t1))≤ς(port(t2))

– ports of all conflicting local transitions t1, t2 have the same level of security
src(t1) = src(t2) ⇒ ς(port(t1)) = ς(port(t2))

– variables and ports are consistently annotated on all local transitions t
∀(x := e) ∈ asgn(t). ∀y ∈ use(guard(t)). σ(y)≤ς(port(t))≤σ(x)

– variables and ports are consistently annotated on connectors
∀(poutpin) ∈ Γ. σ(var(pout))≤ς(pout) = ς(pin)≤σ(var(pin))

Proof. (Sketch) It can be shown that the conditions above imply the unwinding
conditions of [8] for indistinguishability ≈s at security level s. In turn, unwinding
conditions are guaranteeing non-interference and therefore security as defined in
Definition 1. A detailed proof is available in [6,7] for a slightly more general
component-based model allowing multiparty interactions between components.

3 Configuration Synthesis

The configuration synthesis problem is defined as follows. Given a partial se-
curity annotation of a system, extend it towards a complete annotation which
is provable secure according to Proposition 1, or show that no such annotation
actually exists. We assume that system components are port deterministic.

We rely on flow dependency graphs as an intermediate artifact for solving
this problem. For every component Bi = (Qi, Xi, Pi, Ti), we define the flow
dependency graph Gi = (Ni, →֒i) where the set of vertices Ni = Xi∪Pi contains
the ports and variables of Bi and edges →֒i ⊆ Ni × Ni correspond to flow
dependencies required by Proposition 1 and are defined below, for every x, y ∈
Xi, p, r ∈ Pi:

y→֒ix iff ∃t ∈ Ti. x := e ∈ asgn(t), y ∈ use(e) ∪ use(guard(t))
p→֒ix iff ∃t ∈ Ti. x := e ∈ asgn(t), p = port(t)

∨
p ∈ P in

i , x = var(p)
y→֒ip iff ∃t ∈ Ti. y ∈ use(guard(t)), p = port(t)

∨
p ∈ P out

i , y = var(p)
p→֒ir iff ∃t, t′ ∈ Ti. p = port(t), r = port(t′), (dst(t) = src(t′) ∨ src(t) = src(t′))

Using flow dependency graphs, the configuration synthesis problem is formally
rephrased as follows:

– Given system Γ (B1, ..., Bn), partial annotation σ0 : X → S ∪ {⊥}
– Find complete annotation ζ : X ∪ P → S such that
(C1) (initial annotation) ∀x ∈ X. σ0(x) 6= ⊥ =⇒ ζ(x) = σ0(x)
(C2) (flow preservation) ∀i = 1, n. ∀x, y ∈ Pi ∪Xi. x→֒iy =⇒ ζ(x)≤ζ(y)
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(C3) (connector consistency) ∀γ = (poutpin) ∈ Γ. ζ(pout) = ζ(pin)

If a complete annotation ζ exists and satisfies the conditions (C1-C3) above,
then the system Γ (B1, ..., Bn) is provable secure for σ = ζ|X and ς = ζ|P , which
are respectively the projections of ζ to variables X and ports P . That is, all
conditions required by Proposition 1 on annotation of ports and variables within
components are captured by dependency graphs (Gi)i=1,n and satisfied according
to (C2). Connectors are consistently annotated according to (C3). Moreover, the
initial annotation is preserved by (C1).

An iterative algorithm to compute the complete annotation ζ is depicted as
Algorithm 1 below. If the algorithm terminates without detecting inconsisten-
cies, then ζ is the less restrictive annotation satisfying conditions (C1-C3). If
an inconsistency is detected, then no solution exists. In this case, the initial an-
notation is inconsistent with respect to the information flow within the system.

Algorithm 1: Annotation Synthesis

1 ζ(n)←
{
σ0(n) if n ∈ X,σ0(n) 6= ⊥
⊓S otherwise

⊲ initialization

2 BList← {Bi}i=1,n ⊲ inter-component outer loop
3 while BList 6= ∅ do
4 choose-and-remove(BList, Bi)
5 nList← Xi ∪ Pi ⊲ intra component inner loop for Gi
6 while nList 6= ∅ do
7 choose-and-remove(nList, ni)
8 si ← ⊔{ζ(n) | n→֒ini} ⊲ recompute security level of ni

9 if ζ(ni)≤si and si 6= ζ(ni) then
10 if ni ∈ Xi and σ0(ni) 6= ⊥ and σ0(ni)≤si then
11 stop ⊲ inconsistency detected

12 ζ(ni)← si ⊲ update and propagate change within Gi
13 nList← nList ∪ {n | ni →֒in}

14 foreach pi ∈ P out
i ∪ P in

i do
15 find pj ∈ P out

j ∪ P in
j with (pipj) ∈ Γ or (pjpi) ∈ Γ

16 if ζ(pi) 6= ζ(pj) then
17 ζ(pj)← ζ(pi) ⊲ update and propagate change across connectors
18 BList← BList ∪ {Bj}

Initially, all system variables are either annotated by security levels given
from system designer σ0 if it exist or a default level that correspond to the
lowest security level (⊓S) in the lattice (line 1). The algorithm visits iteratively
all components (lines 2-18). For every component Bi, it propagates forward the
current annotation ζ within the flow graph Gi (lines 3-13). The security level
ζ(ni) of every node ni is eventually increased to become more restrictive than
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the levels of its predecessors (lines 8-13). An inconsistency is reported if the
security level increases for an initially annotated variable (lines 10-11). Any
change triggers recomputation of successors nodes of ni (lines 12-13). Finally,
once the annotation within Gi is computed, any change on security levels on
input/output ports is propagated to connected ports (lines 14-18). After this
propagation step, any pair of connected ports has again the same security level.
As for variables, notice that annotations for connected ports can only increase:
any increase due to propagation within a component is immediately propagated
to the connected port. The involved components need to be revisited again (line
18). Notice that both while loops are guaranteed to terminate as the number of
annotation changes is bounded for every node. That is, the security level can
only be increased finitely many times in a bounded lattice (S,≤).

Proposition 2. Algorithm 1 solves the configuration synthesis problem.

Proof. Initially, the annotation ζ is defined to satisfy initial annotation con-
dition (C1). It equally satisfies connector consistency (C3) but not necessar-
ily flow preservation (C2). The algorithm propagates this annotation along the
flow graphs, without changing the initially annotated variables. Intra-component
propagation makes flow preservation (C2) hold for the component but may actu-
ally destroy (C3). On the contrary, the propagation across connectors re-establish
(C3) but may destroy (C2) for connected components. At termination, no anno-
tation changes are possible/needed, hence, the final annotation ζ satisfies both
flow preservation condition (C2) but and connector consistency (C3).

As an example, we apply Algorithm 1 to the Producer-Buffer-Consumer pre-
sented in Figure 2 with initial annotation {x 7→ M, z 7→ H}, for security levels
L(ow), M(edium) and H(igh), such that L≤M≤H. The three flow dependency
graphs and their dependencies through connectors are depicted in Figure 3. For
this initial labelling, the algorithm succeeds to generate a complete annotation
for variables {x 7→ M,w 7→ L, y 7→ M, z 7→ H, t 7→ L, u 7→ H} and all ports
are mapped to M . If however we add to the initial configuration a label to the
guard variable w, {w 7→ H}, Algorithm 1 detects an inconsistency at the Pro-
ducer component and an illicit flow from the w variable to y variable through
port produce is reported to the user.

inout

produce
consume

Buffer ConsumerProducer

out

H

in

M

L

M

M M

M M
L

M

H

M
x

w

y

z

t

u

Fig. 3. Dependency graphs of Producer-Buffer-Consumer from Figure 2
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4 Application to Web Services

In this section, we apply the synthesis approach to generate secure configura-
tions of WS applications. We consider a composition of BPEL and elementary
services annotated using the decentralized label security model (DLM) [9]. We
briefly present how such WS compositions are represented in the component-
based model and we show how the DLM annotations are used in the BPEL
context.

4.1 The BPEL Composition

BPEL provides structuring mechanisms to compose several WS into a new one.
We particularly focus on BPEL4WS [10] processes which compose services from
activities, that are either (1) basic such as receive, reply, invoke, assign, throw,
exist, or (2) structured such as sequence, if, while, repeatuntil, pick, flow.

The representation of BPEL processes in our component model is struc-
tural, that is, the structure of the source BPEL model is preserved in the target
model. More precisely, a process is represented as an atomic component where
the behavior encompasses all its basic and structured activities. All process vari-
ables are added to the atomic component. Basic activities such as 〈receive.../〉,
〈reply.../〉, 〈invoke.../〉 are translated into specific transitions triggered by respec-
tively Receive * and Reply * ports. Their corresponding variables are implicitly
attached to the above ports. The 〈assign.../〉 activity is translated as an internal
transition that executes the corresponding assignment.

Receive_Req1

[plan>threshold] [plan<threshold]

Assign_outplan

in

internal internal

outplan:=(0,0,0)

localplan

outplan outplan

out_plan:=
localplan

Assign_outplan

Reply1_outplan Reply1_outplan

Receive_ack
ack

outplan=f(ack)

Prosumer

Receive_Req1

Receive_ack
Reply2_outplan

Reply2_outplan

Reply1_outplanl1

l4

l8

l2

l3

l5l6

l7

l9

Fig. 4. Atomic component representation of a BPEL process
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Structured activities define the overall control flow of transitions in the
atomic component, in the usual way. In particular, transition guards are ex-
tracted from 〈if..., while..., repeatuntil.../〉 and 〈pick.../〉 activities. As a restric-
tion, the parallel execution of activities within a 〈flow.../〉 is not supported. In
this case, their execution is made sequential in an arbitrary order.

Finally, we define the connectors and the composition of the atomic compo-
nents by using the PartnerLinks defined for BPEL processes. Every 〈invoke.../〉,
〈receive.../〉 and 〈reply.../〉, 〈receive.../〉 interaction defined over partner links
is translated to a connector relating the corresponding components and their
respective ports. Let us notice that processes may interact through partner links
with external WS, that is, developed in other languages than BPEL (such as
Java, C, etc). In this case, these WS are represented as atomic components with
an implicit behaviour, for arbitrarily sending and receiving data through their
connected ports.

Similar translations have been already defined in the literature [11]. As the
above translation is structural the resulting model remains comprehensive for
the WS designer. The representation relies basically on adapting reusable and
composable model components that directly maps processes with limited num-
bers of execution steps. Despite that, some features in BPEL language are not
considered such as fault/event handling and scopes. Security errors that can be
generated by these aspects are not in the scope of this paper.

4.2 Decentralized Label Model

The decentralized label model (DLM)[9] provides a universal labeling scheme
where security labels (or levels) are expressed using set of policies. A confi-
dentiality label L contains (1) an owner set, denoted O(L), that are principals
representing the originating sources of the information, and (2) contains for each
owner o ∈ O(L) a set of readers, denoted R(L,o), representing principals to whom
the owner o is willing to release the information. The association of an owner o
and a set of readers R(o) defines a policy. Principals are ordered using an acts for
partial order relation (denoted ≺) which is a delegation mechanism that enables
a principal to pass his rights to another principal (e.g., o1 ≺ o2 states that o2
can act for o1). A security domain is defined over the set of confidentiality labels
by using a flows to relation defined as follows:

L1≤L2 ≡ ∀o1 ∈ O(L1). ∀o2 ∈ O(L2). o1 ≺ o2 ∧
∀r1 ∈ R(L1, o1). ∃r2 ∈ R(L2, o2). r1 ≺ r2

The intuition behind the flows to relation ≤ above is that (1) the information
can only flow from one owner o1 to either the same or a more powerful owner
o2 where o2 can act for o1 and (2) the readers allowed by R(L2, o) must be a
subset of the readers allowed by R(L1, o) where we consider that the readers
allowed by a policy include not only the principals explicitly mentioned but also
the principals able to act for them.

In our setting for BPEL WS composition, the principals used to define the
acts for relation and the security domain are obtained from BPEL partner links
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that correspond to WS URI. That is, principals can be either BPEL processes
or atomic WS in some primitive language.

The designer expresses his security policy by tagging BPEL variables using
DLM labels. The security domain and these annotations are then transposed
as such on the component-based model. For example, a confidentiality label
L: {Prosumer:SMG} assigned to the variable outplan in the Prosumer process
presented in Figure 4 (right side) is used directly, as it is, for the outplan variable
in Prosumer atomic component obtained by translation (left side).

4.3 Implementation

The configuration synthesis algorithm described in Section 3 is implemented and
available for download at http://www-verimag.imag.fr/∼bensaid/secureBIP/.
The user provides the WS composition in BPEL and a configuration file (.xml)
that contains an acts for relation defining authorities for different processes and
the DLM annotations for some process variables. An example of a configuration
file is provided in the Appendix. In a first step, the BPEL composition is struc-
turally transformed into a component-based model representation in BIP[12].
The transformation extends an already existing translation of BPEL to BIP
developed in [11] to study functional aspects. In a second step, the synthesis
tool takes as input the system model (.bip) and the configuration file (.xml),
builds the dependency graphs of components and runs the synthesis algorithm
to produce the complete configuration.

5 Use-case: Smart Grid Application

To illustrate the use of our framework we consider a simplified model of a smart
grid system [13] managed through Internet network using WS. Smart grid sys-
tems usually interconect a number of cooperating prosumers, (that is, pro-ducers
and con-sumers) of electricity on the same shared infrastructure. In principle,
every prosumer is able to produce, store and consume energy within the grid.
However, its use of the grid has to be negotiated in advance (e.g., on a daily ba-
sis) in order to adapt to external conditions (e.g., weather conditions, day-to-day
demands,...) as well as to maintain the behaviour of the grid in some optimal pa-
rameters (e.g., no peak consumption). Smart grids are subject to requirements
related to safety and security e.g., the power consumption / production of a
prosumer must remain secret as it actually may reveal sensitive information.

In our WS model of the smart grid, the system consists of a finite number
of prosumer processes, Pri, communicating with a smart grid process, SMG.
Initially, each Pri sends its consumption and production plan, (Pi, Ci, Bi), for
the next day to the grid. Production Pi, consumption Ci and (storage) battery
Bi are expressed using energy units (integer) where 0 � Pi � 2, −3 � Ci � 0 and
−1 � Bi � 1. The SMG validates the plans received by checking that the overall
energy flow through the grid implied by these plans does not exceed the power
line capacity. This check measures the consumption exceed acknowledgment,
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ack, compared to a bound, that is, ack=0 if the −1 � ∑n
i=1(Pi + Ci + Bi) �

4, otherwise, it returns the difference between the sum of the plans and the
consumption bounds. The SMG sends back to each Pri an acki to negotiate
updating its own plan, where ack =

∑n
i=1 acki. The negotiation terminates

when ack=0 meaning that the energy flow on the grid does not exceed the line
capacity. Figure 5 shows the system overview with two prosumers that exchange
queries with the smart grid.

SMG
Reply_ack Reply_ack

Request_plan Request_plan

Reply1_plan

Reply2_plan Reply2_plan

Pr1 Pr2

Reply1_plan

Fig. 5. Smart grid application overview

The information flow security requirements that we emphasize here consist
first, on ensuring the confidentiality of energy consumption plan for each Pri,
(which can reveal sensitive competitive information such as its production capac-
ity) and second, ensuring that no prosumer is able to deduce the consumption
plan of any other prosumer by observing the received ack information. For in-
stance, consider two prosumers such that one of them, Pr1, sends an extreme
consumption plan (0,−3,−1) to the SMG while the second, Pr2, sends (0,−3, 0)
as a consumption plan. The SMG first calculates the acknowledgment message
that is ack=3 then sends ack1=1, ack2=2 messages to respectively Pr1 and Pr2.
Assume now that Pr2 sends back a new consumption plan (1,−2, 1) and gets
back ack2=0. By only observing other ack1 message sent to Pr1, the Pr2 can
deduce that the consumption plan of Pr1 is equal to (0,-3,-1). The translation
of Pr1 process is given in Figure 4 while the translation of the SMG process is
given in the appendix.

For applying our approach to check system security, the designer introduces
initially his partial security policy by tagging intuitively some variables that he
considers sensitive in system model with security annotations. He also provides
an acts for diagram for all model components where he gives authorities to
some of them to act for others. In this system the SMG component can only
acts for both Pr1 and Pr2. To ensure confidentiality of prosumers plan, the
system administrator annotates out plan1 with L1 = {Pr1 : SMG} label and
out plan2 with L2 = {Pr2 : SMG} label. Obviously, L1 6≤ L2 and L2 6≤ L1

are indicating that both prosumers represent separate security domains that
can only communicate with the SMG component. Then, the tool automatically
generates the dependency graph of the transformed smart grid system. Presented
in Figure 6, the dependency graph is build over ports (rectangles) and data
variables (circles) locally at each atomic component(big circles), where arrows
intra-circles represent dependencies between ports and data in the same atomic
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Fig. 6. Generated dependency graphs (fragments).

component while arrow inter-circles represent inter-components dependencies.
The application of Algorithm 1 to the system dependency graph detects an
illegal information flow in the system and generates an error in the out plan
node for both prosumers. Indeed, the label propagation in the system creates at
ack node of the SMG component a new label L3 = L1 ⊔ L2. Obviously, label
L3 = {Pr1 : SMG;Pr2 : SMG} is more restrictive than both labels L1 and L2.
Since the ack node depends on out ack1 in Pr1 and out ack2 in Pr2, then it
is labelled with L3 in both prosumers which causes security level inconsistency
at out plan nodes. Algorithm 1 generates an inconsistent security level error
between both out plan and ack nodes. Here, the system designer has to redefine
the initial configuration, for instance, by given more privilege to prosumers to
act for SMG component and enforce variable ack to higher security level L3 =
{SMG : SMG}. In this case, and with the authority that each prosumer gain,
flow can go from L3 to L1 and L2.

n P X σ0 t
4 26 24 3 1.82
13 98 87 12 1.94
25 194 171 24 2.01
101 802 703 100 2.82

Table 1. Model size and configuration
time (in s) for smart grid application with
one initial security label by each prosumer.

As an evaluation of the composi-
tional approach performance, table 1
presents some experiments over config-
uration time t for different variation of
the number of prosumer components,
n, in the smart grid system for a given
number of variables X, ports P and
with initial labels number, σ0. Here we
can notice that our configuration syn-
thesis does not introduce an overhead even by increasing the number of system
components.

6 Related Work

There are many commercial tools like IBMs XML Security Gateway XS40,
application servers [14] and Web Service Enhancements for Microsoft .NET
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(WSE) [15] that provide GUI to help users configure and verify WS security
but the user has to learn about standard WS-Security syntax and options.

In [16], authors propose a high-level GUI for configuring WS security with
a business-policy-oriented view. It models the messaging with customers and
business partners, lists various threats, and presents best-practice security pat-
terns against these threats. A user can select among proposed generated basic
patterns according to the business policies, and then apply them to the mes-
saging model. The result of the pattern application is, afterwards, described in
the Web Services Security Policy Language (WS-Security Policy). None of these
tools handle the non-interference property like we do. Regarding formal models
for non-interference in WS, in [17], authors present WS data flows as exten-
sions of the Petri-net model and in [18], non-interference has been formalized for
Petri-nets. Nevertheless, these solutions have some drawbacks which are mainly
that data and resource description is manual and can be therefore error prone.
Later on, the same authors propose the IFAudit tool that represents data flow as
propagation graphs generated from workflow’s log data. The propagation graphs
are analyzed against the security policies.

Distinct security models are proposed in [19] where authors propose a classi-
fication of security-aware WS. They list a set of works classified in information
flow category. Nevertheless, these works are restricted to verification rather than
security configuration synthesis. Here we propose a practical automated verifica-
tion method for transformed model of composed BPEL WS, based on formally
proved security conditions. In [20,21], the authors deal with chained services and
security is checked with a notion of back check procedure and pass-on certifi-
cate. It is not clear how to apply this solution to WS orchestration workflows
and how to handle implicit interference. A recent work extends BPEL-orchestra
engine [22] to handle IFC security. This work is inspired from SEWSEC frame-
work [23] by adopting the distributed security label to annotate information.
Nevertheless, instead of using abstractions like PDG, this annotation is set in-
side the BPEL code. Code annotation requires security skills, does not separate
functional and security concerns and induces development overhead.

Finally, our work is related to information flow security in component-based
systems. In contrast to [21] where authors verify security in a component-based
model by annotating the system ADL (Architecture Description Language) and
tracking information flow at intra- and inter-components separately, this work
provides a sound model with formal proofs guaranteeing system non-interference.
Besides, and compared to our previous work [6] where we adopted a more general
component-based model to build secure distributed systems, here we propose a
simpler message-based send-receive model suitable to model applications with
web-style primitives and communications like BPEL-based composed WS and we
propose not only a security verification but also a practical solution for security
configuration synthesis.
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7 Conclusion and Future Work

In this paper, we propose a component-based approach to assist system design-
ers to analyze and enforce information flow security in WS compositions. We
implemented a compositional synthesis algorithm that propagates labels and
generates secure system configurations starting from partial configurations.

As future work, we plan to extend this work in several directions. First, we are
seeking for less restrictive syntactic conditions for establishing non-interference.
In particular, we believe that a finer control flow analysis using for instance dom-
inance analysis [24] can provide finer dependencies amongst variables and ports.
Second, we are working on relaxing the non-interference property and introduc-
ing declassification mechanisms to our model. Declassification has been studied
for sequential interactive programs with inputs and outputs [25], nevertheless,
its extension to distributed concurrent component-based models such as Web
Services is less understood.
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Appendix

Figure 7 shows a transformation of the SMG process of the smart grid system
given as BPEL workflow, into an atomic component. The behavior of the atomic
component represents the activities given in the BPEL process.
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Fig. 7. Translation of the SMG component

The designer input configuration file includes an acts for relation as well
as some annotated variables. Here we presented an example of a configuration
file of the smart grid system. In this xml file we define 〈authority/〉 to differ-
ent system components representing the acts for relation. Moreover, we specify
by 〈var config/〉 the annotations of variables from different atomic components
(processes).

<?xml version="1.0"?>
<config>

<acts_for >
<authority >SMG: Prosumer1 , Prosumer2 , Prosumer3 </authority >

</acts_for >
<var_config >

<variable var="outplan" process="Prosumer1"
label="Prosumer1:SMG"></variable >

<variable var="outplan" process="Prosumer2"
label="Prosumer2:SMG"></variable >

<variable var="outplan" process="Prosumer3"
label="Prosumer3:SMG"></variable >

</var_config >
</config>
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Abstract. This work presents a novel approach for applying composi-
tional model checking of behavioral UML models, based on learning. The
Unified Modeling Language (UML) is a widely accepted modeling language
for embedded and safety critical systems. As such the correct behavior of
systems represented as UML models is crucial. Model checking is a success-
ful automated verification technique for checking whether a system satis-
fies a desired property. However, its applicability is often impeded by its
high time and memory requirements. A successful approach to tackle this
limitation is compositional model checking. Recently, great advancements
have been made in this direction via automatic learning-based Assume-
Guarantee reasoning.
In this work we propose a framework for automatic Assume-Guarantee
reasoning for behavioral UML systems. We apply an off-the-shelf learn-
ing algorithm for incrementally generating environment assumptions that
guarantee satisfaction of the property. A unique feature of our approach is
that the generated assumptions are UML state machines. Moreover, our
Teacher works at the UML level: all queries from the learning algorithm
are answered by generating and verifying behavioral UML systems.

1 Introduction

This work presents a novel approach for learning-based compositional model
checking of behavioral UML systems. Our work focuses on systems that rely on
UML state machines, a standard graphical language for modeling the behavior
of event-driven software components. The Unified Modeling Language (UML)[3]
is becoming the dominant modeling language for specifying and constructing em-
bedded and safety critical systems. As such, the correct behavior of systems rep-
resented as UML models is crucial and model checking techniques applicable to
such models are required.

Model checking [7] is a successful automated verification technique for check-
ing whether a given system satisfies a desired property. The system is usually
described as a finite state model such as a state transition graph, where nodes
represent the current state of the system and edges represent transitions of the
system from one state to another. The specification is usually given as a temporal
logic formula. The model checking algorithm traverses all of the system behaviors
(i.e., paths in the state transition graph), and either concludes that all system

⋆ An extended version including full proofs is published as a technical report in [22]
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behaviors are correct w.r.t. to the checked property, or provides a counterexample
that demonstrates an erroneous behavior.

Model checking is widely recognized as an important approach to increase
the reliability of hardware and software systems and is vastly used in industry.
Unfortunately, its applicability is often impeded by its high time and memory
requirements. One of the most appealing approaches to fighting these problems is
compositional model checking, where parts of the system are verified separately.
The construction of the entire system is avoided and consequently the model
checking cost is reduced. Due to dependencies among components’ behaviors, it is
usually impossible to verify one component in complete isolation from the rest of
the system. To take such dependencies into account the Assume-Guarantee (AG)
paradigm [17, 27, 14] suggests how to verify a component based on an assumption
on the behavior of its environment, which consists of the other system components.
The environment is then verified in order to guarantee that the assumption is
actually correct.

Learning [2] has become a major technique to construct assumptions for the
AG paradigm automatically. An automated learning-based AG framework was
first introduced in [9]. It uses iterative AG reasoning, where in each iteration an
assumption is constructed and checked for suitability, based on learning and on
model checking. Many works suggest optimizations of the basic framework and
apply it in the context of different AG rules (e.g. [4, 11, 24, 16, 25, 6]).

In this paper we propose a framework for automated learning-based AG rea-
soning for UML state machines. Our framework is similar to the one presented in
[9], with the main difference being that our framework remains at the state ma-
chine level. That is, the system’s components are state machines, and the learned
assumptions are state machines as well. This is in contrast to [9], where the
system’s components and the learned assumptions are all presented as Labeled
Transition Systems (LTSs), which are a form of low-level state transition graphs.
To the best of our knowledge, this is the first work that applies learning-based
assume guarantee reasoning in the context of behavioral UML systems.

A naive implementation of our framework might translate a given behavioral
UML system into LTSs and apply the algorithm from [9] on the result. However,
due to the hierarchical and orthogonal structure of state machines such translation
would result in LTSs that are exponentially larger than the original UML system.
Moreover, state machines communicate via event queues. Such translation must
also include the event queues, which would also increase the size of the LTSs by
an order of magnitude. We therefore choose to define a framework for automated
learning-based AG reasoning directly on the state machine level. Another impor-
tant advantage of working with state machines is that it enables us to exploit
high level information to make the learning much more efficient. It also enables us
to apply model checkers designed for behavioral UML systems (e.g. [5, 23, 19, 8, 1,
29, 10, 15, 20]). Such model checkers take into account the specific structure and
semantics of UML, and are therefore more efficient than model checkers designed
for low-level representations (such as state transition graphs).

We use the standard AG rule below, where M1 and M2 are UML state ma-
chines. We replace 〈A〉 with [A], to emphasize that A is a state machine playing
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the role of an assumption on the environment of M1. The first premise (Step 1)
holds iff A||M1 satisfies ϕ, and the second one (Step 2) holds iff every execution of
M2 in any environment has a representative in A. Together they guarantee that
M1||M2 satisfies ϕ in any environment.

Rule AG-UML (Step 1) [A] M1 〈ϕ〉
(Step 2) 〈true〉 M2 [A]

〈true〉 M1||M2 〈ϕ〉
We assume ϕ is a safety property, and use the learning algorithm L∗ [2, 28] to

iteratively construct assumptions Ai until both premises of the rule hold for Ai,
implying M1||M2 |= ϕ, or until a real counterexample is found, demonstrating
that M1||M2 6|= ϕ.

UML state machines communicate via asynchronous events using thread-
local event queues. When a state machine receives an event, it makes a run-to-
completion (RTC) step, in which it processes the event and continues execution
until it cannot continue anymore. During its execution, the state machine may
send events to other state machines. We exploit the notion of RTC steps for
defining the alphabet Σ of the learned assumptions. We define an alphabet over
sequences of events, where a letter (i.e., a sequence of events) represents a single
RTC step of the assumption. A word w over these letters corresponds to an execu-
tion of the assumption. It also represents the equivalence class of all executions of
the checked system, which are interleaved with w. Our alphabet is defined based
on statically analyzing the behavior of M2.

Learning words over sequences of events makes L∗ highly efficient, as it avoids
learning sequences that can never occur in M2 and therefore should not be con-
sidered in an assumption. Moreover, our learning is executed w.r.t. equivalence
classes of executions. Even though our learning process is over equivalence classes,
we show that our framework is sound and complete. That is, we do not lose in-
formation from grouping executions according to their representative word.

The remainder of the paper is organized as follows. Some background on UML
and AG reasoning is given in Section 2. UML computations, executions, words
and their relations are defined in Section 3. In Section 4 we present our framework,
implementing Rule AG-UML for UML systems. We conclude in Section 5.

2 Preliminaries

2.1 UML Behavioral Systems

We present here a brief overview of behavioral UML systems, and in particular,
UML state machines. We refer the interested reader to the UML specification [13].
Behavioral UML systems include objects (instances of classes) that process events.
Event processing is performed by state machines, which include complex features
such as hierarchy, concurrency and communication. UML objects communicate by
sending each other events (asynchronous messages) that are kept in event queues
(EQs). Every object is associated with a single EQ, and several objects can be
associated with the same EQ. In a multi-threaded system there are several EQs,
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Fig. 1. Example State Machine of Class client

one for each thread. Each thread executes a loop, taking an event from its EQ, and
dispatching it to the target object, which then makes an RTC step. Only when the
target object finishes its RTC step, the thread dispatches the next event available
in its EQ. RTC steps of different threads are interleaved.

Fig. 1 describes the state machine of class client. UML state machines include
hierarchical states (states Work and Client in Fig. 1), a single initial state in
each hierarchical state (e.g., state s0 in Work), and transitions between states.
Each transition is labeled with t[g]/a, where t, g and a are trigger, guard, and
action, respectively. Each of them is independently optional. A trigger is an event
name, a guard is a Boolean expression over local and global variables, and an
action is a piece of code in the underlying language used by the model. Actions
can include statements generating event e and sending it to the relevant EQ. We
represent such statements as “GEN(e)”. An event e includes the name of the event
and the state machine to which the event is sent. The set of events of a system
includes events sent by a state machine in the system, and events sent by the
“environment” of the system (to be formally defined later).

A transition from state s is enabled if s is part of the current (possibly hi-
erarchical) active state, the trigger (if there is one) matches the current event
dispatched, and the guard holds (an empty guard is equivalent to true). Further,
all transitions contained in s are disabled. For example, in Fig. 1, the transition
from Work to Cancel is enabled only if Work is active, the event dispatched is
e1, and the transitions from s0, s1, s2 and s3 are disabled. When a transition is
taken, the action labeling it is executed, and the state machine moves to the tar-
get state. An object executes an RTC step by traversing on enabled transitions,
until it cannot continue anymore.

A state can include multiple orthogonal regions, separated by a dashed line,
which corresponds to the parallel execution of the state machines contained in
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them (e.g., state Client has two orthogonal regions). When an event is dispatched
to a state machine, and it has no enabled transitions, then the event is discarded
and the RTC step terminates immediately. Otherwise, if there exists an enabled
transition, we say that the event is consumed. In each RTC step only the first
transition may consume an event. An exception is the case of orthogonal regions
that share the same trigger. These transitions are executed simultaneously. Since
the semantics of simultaneous execution is unclear, we assume that the actions of
transitions in orthogonal regions labeled with the same trigger do not affect other
transitions. That is, firing them in any order yields the same effect on the system.

A computation of a system is defined as a sequence of system configurations.
A system configuration includes information about the current state of each state
machine in the system, the contents of all the EQs, and the value of all variables
in the system. The initial configuration in a computation matches the initial state
of the system, and the system moves from configuration c to configuration c′ by
executing an enabled transition or by receiving an event from the environment.
A formal definition of computations can be found in [21].

2.2 Assume Guarantee Reasoning and Compositional Verification

[9] presents a framework for automatically constructing assumption A in an itera-
tive fashion for applying the standard AG rule, where M1 and M2 are LTSs and
ϕ is a safety property. At each iteration i, an assumption Ai is constructed. Af-
terwards, Step 1 (〈Ai〉M1〈ϕ〉) is applied in order to check whether M1 guarantees
ϕ in an environment that satisfies Ai. A false result means that this assumption
is too weak, i.e., Ai does not restrict the environment enough for ϕ to be satisfied.
Thus, the assumption needs to be strengthened (which corresponds to removing
behaviors from it) with the help of the counterexample produced by Step 1. If
Step 1 returns true then Ai is strong enough for the property to be satisfied. To
complete the proof, Step 2 (〈true〉M2〈Ai〉) must be applied to dischargeAi onM2.
If Step 2 returns true, then the compositional rule guarantees 〈true〉M1||M2〈ϕ〉.
That is, ϕ holds in M1||M2. If it returns false, further analysis is required to iden-
tify whether M1||M2 violates ϕ or whether Ai is stronger than necessary. Such
analysis is based on the counterexample returned by Step 2. If Ai is too strong
it must be weakened (i.e., behaviors must be added) in iteration i + 1. The new
assumption may be too weak, and thus the entire process must be repeated. The
framework in [9] uses a learning algorithm for generating assumptions Ai and a
model checker for verifying the two steps in the rule.

2.3 The L∗ Algorithm

The learning algorithm used in [9] was developed by [2], and later improved by
[28]. The algorithm, named L∗, learns an unknown regular language and produces
a minimal deterministic finite automaton (DFA) that accepts it. Let U be an
unknown regular language over some alphabet Σ. In order to learn U , L∗ needs
to interact with a Minimally Adequate Teacher, called Teacher. A Teacher must
be able to correctly answer two types of questions from L∗. A membership query,
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consists of a string w ∈ Σ∗. The answer is true if w ∈ U , and false otherwise.
A conjecture offers a candidate DFA C and the Teacher responds with true if
L(C) = U (where L(C) denotes the language of C) or returns a counterexample,
which is a string w s.t. w ∈ L(C) \ U or w ∈ U \ L(C).

3 Representing Executions as Words

A behavioral UML system with n state machines is denoted by Sys = M1||...||Mn.
We assume state machines communicate only through events (all variables are
local), and assume also that every RTC step is finite. These assumptions enable
us to define sequences of events representing a single RTC step, which will be the
letters of our alphabet (formally defined later). For simplicity of presentation, we
assume the following restrictions: (a) Transitions with triggers do not generate
events, and each transition may generate at most one event, (b) A state machine
does not generate events to itself, (c) An event e cannot be generated by more
than one state machine, and (d) Each state machine runs in a separate thread1.

Given a state machine M , Con(M) and Gen(M) denote the events that M
can consume and generate, respectively. An over-approximation of these sets can
be found by static analysis. The events of a system include events sent by a state
machine in the system denoted ESys, and events sent by the “environment” of the
system denoted EEnv. For a system Sys, ESys(Sys) = Gen(M1)∪...∪Gen(Mn),
and EEnv(Sys) = {Con(M1) ∪ ... ∪ Con(Mn)} \ {Gen(M1) ∪ ... ∪ Gen(Mn)}.
We denote EV (Sys) = ESys(Sys) ∪ EEnv(Sys). We assume the most general
environment, that can send any environment event at any time. Note that the
environment of a system might send events that will always be discarded by the
target state machine. Since we are handling safety properties, such behaviors do
not affect the satisfaction of the property, and we can therefore ignore them.

Recall that a computation of Sys is a series of configurations. Based on the
above assumptions on Sys, each move from configuration c to configuration c′ in
a computation is labeled by at most one of tr(e) and gen(e), where tr(e) denotes
that when moving from c to c′ event e was dispatched to the target state machine,
and gen(e) denotes that event e was either generated by a state machine in Sys
(if e ∈ ESys(Sys)) or sent by the environment of Sys (if e ∈ EEnv(Sys)). Note
that it is possible that a move is denoted with neither (labeled with ǫ).

Note that events are always generated before they are dispatched. UML2 places
no restrictions on the implementation of the EQs, and neither do we. However,
a specific implementation implies restrictions on the possible order of events. For
example, if the EQs are FIFOs, then if e was generated before e′ and the target
of both events is M , then e will be dispatched before e′. Given a set of events
EV , a sequence of labels over {tr(e), gen(e)|e ∈ EV } is an execution over EV if it
adheres to the above ordering requirements. A computation matches an execution
ex if ex is the sequence of non-ǫ labels of the computation. We denote the set
of executions of Sys by Lex(Sys). Note that every computation matches a single
execution. However, different computations may match the same execution.

1 The case where several state machines run on the same thread is simpler, however
presentation of both is cumbersome. We present only the more complex case.
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Fig. 2. Example State Machine for Class server

Example. Consider the system Sys = server||client where server and client are
presented in Figs 2 and 1, respectively. Then gen(e1), tr(e1), gen(req1), tr(req1),
gen(grant1) ∈ Lex(Sys)

2. However, gen(e1), tr(e1), gen(cancel1) 6∈ Lex(Sys),
since client, when in initial state, cannot generate cancel1 after consuming e1.

From here on we do not address computations of a system, and consider only
executions. We say that “execution ex satisfies a property ϕ” iff all computations
that match ex satisfy ϕ. Let EV ′ ⊆ EV be a set of events, and ex be an execution
over EV . The projection of ex w.r.t. EV ′, denoted ex ⇂EV ′ , is the projection of
ex on {tr(e), gen(e)|e ∈ EV ′}. The following theorem is a result of the fact that
state machines communicate only through events.

Theorem 1 Let Sys = M1||...||Mn, and let ex be an execution over EV (Sys).
Then, ex ∈ Lex(Sys) iff for every i ∈ {1, ..., n}, ex⇂EV (Mi)∈ Lex(Mi).

In order to later apply the L∗ algorithm for learning assumptions on state
machines, we first need to define an alphabet.

Def. 2 Let M be a state machine. σ = (t, (e1, .., en)) is in the alphabet of M ,
Σ(M), if t ∈ Con(M) and there exists an RTC step of M that starts by consuming
or discarding t, and continues by generating a sequence of events e1, ..., en.

Letters in Σ(M) where n is 0 are denoted (t, ǫ). The idea behind our definition
is that since the state machines in our systems communicate only through events,
the alphabet maintains only the event information of the state machines. Since
every RTC is finite, then an over-approximation of Σ(M) can be found by static
analysis (by traversing the graph of M), and the over-approximation is finite.

Example. Let M = client (Fig. 1). Then Σ(M) = {(e1, (req1)), (e1, (clr1, cancel1)),
(e1, ǫ), (deny1, ǫ), (deny1, (clr1)), (grant1, ǫ), (ev1, (clr1)), (ev1, (cont1)), (ev1, ǫ).
For example, (e1, (clr1, cancel1)) ∈ Σ(M) (resulting from a possible RTC step that
starts when M is in state Req). Also (ev1, ǫ) ∈ Σ(M), since client can discard
ev1 (e.g., when in initial state state).

For a letter σ = (t, (e1, ..., en)), trig(σ) = t and evnts(σ) = {e1, .., en}. We
extend these notations to the alphabet Σ in the obvious way. Also, EV (Σ) =
trig(Σ) ∪ evnts(Σ).

2 In the examples throughout the paper we assume EQs are implemented as FIFOs.
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Following, we define the relation between executions and words. Intuitively,
an execution ex matches a word w if the behavior of M in ex matches w.

Def. 3 Let Sys be a system that includes state machine M , let ex = f1, f2, .... ∈
Lex(Sys), and let w = σ1, σ2, ... ∈ Σ(M)∗. Let ξ1 = f ′

1, f
′
2, ... be the projec-

tion of ex on {tr(e)|e ∈ Con(M))} ∪ {gen(e)|e ∈ Gen(M))}. Assume also ξ2 =
f ′′
1 , f

′′
2 , ... is the sequence created from w by replacing σ = (t, (e1, ..., en)) with

tr(t), gen(e1), ..., gen(en). Then ex matches w, denoted ex ⊲ w, iff ξ1 = ξ2.

Note that an immediate result of the above definition is that if ex ⊲ w where
w ∈ Σ∗, then adding or removing from ex occurrences of events not in EV (Σ)
results in a sequence ex′ s.t. ex′ ⊲w still holds. Another important thing to note is
that different executions can match the same word w. Thus w represents all the
different executions under which the behavior of M matches w.

Example. Consider execution ex = gen(e1), tr(e1),gen(req1), tr(req1), gen(grant1),
gen(ev1),tr(ev1)∈ Lex(server||client). We denote with bold the parts of the ex-
ecution that represent behavior of client. For the word w = (e1, req1), (ev1, ǫ) ∈
Σ(client)∗, ex⊲w. It also holds that for the execution ex′ = gen(e1), gen(ev1),tr(e1),
gen(req1) , tr(req1),tr(ev1), gen(grant1), ex

′ ⊲ w.

We consider safety properties over events, based on predicates such as InQ(e),
denoting that e is in the EQ, BeforeQ(e, e′) indicating that e is before e′ in the
EQ, and gen(e) (or tr(e)), indicating that e is generated (or dispatched). We
handle safety properties over LTLx, which is the Linear-time Temporal Logic
(LTL) [26] without the next-time operator. Model checking safety properties can
be reduced to handling properties of the form ∀Gp for a state formula p3[18],
which means that along every execution path, p globally holds (every execution
path satisfies Gp). That is, every reachable configuration satisfies p. We therefore
assume ϕ = ∀Gp. The following theorem states that if an execution ex satisfies
Gp, then adding or removing occurrences that do not influence p, results in an
execution that satisfies Gp.

Theorem 4 Let ex be an execution over EV and let p be a property over events
EV ′ ⊆ EV . Then ex |= Gp iff ex⇂EV ′ |= Gp.

4 AG for State Machines

Our goal is to efficiently adapt the AG framework for UML state machines. Fol-
lowing, we first show that Rule AG-UML (presented in Section 1) holds for
UML state machines, and present a framework for applying Rule AG-UML for
UML state machines (Section 4.1). We give a detailed description of the frame-
work in sections 4.2 and 4.3, discuss its correctness in Section 4.4, and present a
performance analysis in Section 4.5.

3 In LTL, the syntax of this property is AGp. We choose to denote it by ∀Gp in order
to differentiate the property from AG (which stands for Assume-Guarantee).
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4.1 A Framework For Employing Rule AG-UML and Its Correctness

First, we formally define the meaning of the two premises in Rule AG-UML:
[A]M〈∀Gp〉 holds iff for every ex ∈ Lex(A||M), ex |= Gp. 〈true〉M [A] holds iff
EV (A) ⊆ EV (M) and for every ex ∈ Lex(M), ex⇂EV (A)∈ Lex(A).

Theorem 5 Let M1, M2 and A be state machines s.t. EV (A) ⊆ EV (M2), let p
be a property over events EV ′ ⊆ (EV (A) ∪ EV (M1)), and let ϕ = ∀Gp. Then
Rule AG-UML is sound.

We use L∗ to iteratively construct assumptions A, until either both premises
of Rule AG-UML hold, or until a real counterexample is found. L∗ learns a lan-
guage over words, where each word represents an equivalence class of executions.

In order to apply the L∗ algorithm we define Σ, the alphabet of the language
learned by L∗. Intuitively, Σ includes details of M2 that are relevant for proving
ϕ with M1. The alphabet Σ(M2) (Def. 2) may include events of M2 which are
irrelevant. We therefore restrict Σ(M2) to Σ by keeping only elements of EV (M2)
that are relevant for the interaction with M1 and for ϕ.

Def. 6 Let M1||M2 be a system and ϕ be a safety property. Σ, the assump-
tion alphabet of M2 w.r.t. M1 and ϕ, is the maximal set, s.t. for every σ =
(t, (ei1 , ..., ein)) ∈ Σ there exists σ′ = (t, (e1, ..., em)) ∈ Σ(M2) s.t. both require-
ments hold:

1. (ei1 , ..., ein) is the maximal sub-vector of (e1, ..., em) (i.e., 1 ≤ i1 < i2 < ... <
in ≤ m) where each eij is consumed by M1 or part of the property ϕ.

2. If t ∈ EEnv(M1||M2) and n = 0: add (t, ǫ) to Σ only if either t is part of ϕ
or there exists σ1 = (t, (e′1, ..., e

′
k)) ∈ Σ s.t. k > 0.

Example. Let Sys = server||client where server is M1 and client is M2, and let
ϕ = ∀G(¬(InQ(grant1)∧InQ(deny1)). The events of ϕ are grant1 and deny1. Σ,
the assumption alphabet of M2 w.r.t. M1 and ϕ, is {(e1, (req1)), (e1, ǫ), (grant1, ǫ),
(deny1, ǫ), (e1, (cancel1))}. Note that although (deny1, (clr1)) ∈ Σ(client), since
clr1 is not consumed by the server and is not part of ϕ, then it is not included in
Σ. Similarly, (e1, (clr1, cancel1)) ∈ Σ(client), but only (e1, (cancel1)) ∈ Σ. Note
also that Σ includes all the interface information between client and server. Thus,
(e1, (req1)) ∈ Σ, although neither e1 nor req1 are part of ϕ.

We define the notion of weakest assumption in the context of state machines.

Def. 7 A language Aw ⊆ Σ∗ is the weakest assumption w.r.t. M1 and ϕ if the
following holds: w ∈ Aw iff for every execution ex over EV (Σ) ∪ EV (M1), if
ex ⊲ w and ex⇂EV (M1)∈ Lex(M1), then ex |= Gp.

Assume we could construct a state machine MAw that represents Aw. That is,
for every execution ex over EV (Σ), ex ∈ Lex(MAw) iff there exists w ∈ Aw s.t.
ex⊲w. Then, MAw describes exactly those executions over Σ that when executed
with M1 do not violate Gp. The following theorem states that 〈true〉M1||M2〈ϕ〉
holds iff every execution of M2 matches a word in Aw.
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Theorem 8 〈true〉M1||M2〈ϕ〉 holds iff for every execution ex ∈ Lex(M2), there
exists w ∈ Aw s.t. ex ⊲ w, where Aw is the weakest assumption w.r.t. M1 and ϕ.

Proof Sketch. The proof of direction ⇐ is based on the definitions of executions
(full proof available in [22]). For the proof of direction ⇒, assume there exists
an execution ex1 ∈ Lex(M2) and no word w ∈ Aw s.t. ex1 ⊲ w. Thus, there
exists a word w ∈ Σ∗ \Aw s.t. ex1 ⊲ w. We show that 〈true〉M1||M2〈ϕ〉 does not
hold. If w 6∈ Aw, then there exists an execution ex2 over EV (Σ) ∪ EV (M1) s.t.
ex2 ⇂EV (M1)∈ Lex(M1), ex2⊲w, and ex2 6|= Gp. We then construct an execution ex
by combining ex1 and ex2. Our construction ensures that ex⇂EV (Mi)∈ Lex(Mi) for
i ∈ {1, 2}. We conclude that ex ∈ Lex(M1||M2), and show that ex 6|= Gp as well.
Note that the construction of ex is not straightforward; ex1 and ex2 both match w,
however the other parts of the executions might not match, i.e., the interleaving of
M2 and the environment in ex2 may be different from the interleaving of M1 and
Σ in ex1. Our construction of ex actually shows that there exists an interleaving
that is possible by both M1 and M2, and that still violates Gp. �

From the definition of Aw and from the above theorem we conclude the following
corollary, which states that Rule AG-UML holds if we replace A with MAw .

Corollary 9 Let Aw be the weakest assumption w.r.t. M1 and ϕ. Assume there
exists a state machine MAw that represents Aw. Then Rule AG-UML holds
when replacing A with MAw .

The goal of L∗ is therefore to learn Aw. To automate L∗ in our setting we now
show how to construct a Teacher that answers membership and conjecture queries.
The Teacher answers queries by “translating” the queries into state machines, and
verifying properties on state machines via a model checker for behavioral UML
systems. The model checker must be able to always return a definite answer (true
or false) for properties of type ∀Gp. Also, when answering false it should give a
counterexample. Model checkers for behavioral UML systems verify the behavior
w.r.t. system configurations. Thus, a counterexample is a computation of the sys-
tem. It is straightforward to translate the counterexample into a counterexample
execution or word. Although our goal is to learn Aw, our automatic framework
may stop with a definite true or false answer before Aw is constructed.

For a membership query on w, the Teacher constructs a state machine for w,
and checks if, when executed with M1, ϕ is violated. For conjecture queries, the
Teacher constructs a state machine A(C) from conjecture C, and verifies Step 1
and Step 2 of Rule AG-UML w.r.t. A(C).

From now on, in our following constructions, we sometimes include an err
state in state machines. For simplicity of presentation, for a given system Sys
where some of its state machines include err state, Lex(Sys) represents only the
executions that do not reach err state on any of its state machines.

4.2 Membership Queries

To answer a membership query for w ∈ Σ∗, the Teacher must return true iff
w ∈ Aw. The Teacher creates a state machine M(w) s.t. Σ(M(w)) ⊆ Σ. M(w)
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Fig. 3. M(w) constructed for w

is constructed s.t. for every ex over EV (Σ) ∪ EV (M1): ex ∈ Lex(M(w)||M1) iff
ex ⇂EV (M1)∈ Lex(M1) and ex ⊲ w. If this holds, then (by the definition of Aw in
Def. 7) w ∈ Aw iff for every execution ex ∈ Lex(M(w)||M1), ex |= Gp.

Let w = σ1, σ2, ..., σm and let σi = (ti, (e
i
1, e

i
2, ..., e

i
ki
)), for i ∈ {1, ...,m}.

The state machine M(w) is presented in Fig. 3. A transition labeled with a set of
triggers T (e.g., the transition from s1 to err) is a shorthand for a set of transitions,
each labeled with a single trigger t ∈ T . For σ = (t, (e1, ..., ek)), a compound
transition, denoted as a double arrow ⇒, labeled with trig[grd]/GEN(σ) is a
shorthand for a sequence of states and transitions, where the first transition is
labeled with trig[grd], the second is labeled with action GEN(e1), the third with
action GEN(e2), etc. The idea behind splitting the compound transition into
intermediate states is to enable all possible interleaving between M(w) and M1,
thus ensuring that every execution over EV (Σ) ∪ EV (M1) that represents an
execution of M1 and matches w is indeed a possible execution of M(w)||M1.

We explicitly define at each state si the behavior of M(w) in response to any
possible event t ∈ trig(Σ). Not specifying such a behavior implies that if t is
dispatched to M(w) then M(w) discards t and remains in the same state. This is
an undesired behavior ofM(w), which is supposed to execute w with no additional
intermediate letters. Thus, transitions that do not match w are sent to state err.
The following theorem describes the executions of M(w).

Theorem 10 Let M(w) be the state machine constructed for word w ∈ Σ∗. For
every execution ex over EV (Σ): ex ∈ Lex(M(w)) iff there exists a prefix w′ of w
s.t. ex ⊲ w′.

Once M(w) is constructed, the Teacher model checks M(w)||M1 |= ∀G(p ∨
IsIn(err)), where IsIn(s) denotes that s is part of the current state of the system.
The model checker returns true iff for every execution one of the following holds:
(1) the execution does not reach state err, i.e. the execution matches a prefix of
w, and p is satisfied along the entire execution, or (2) the execution reaches state
err, meaning that the execution does not match w and therefore we do not need
to require p4. The Teacher returns true, indicating w ∈ Aw iff the model checker
returns true. The following theorem defines the correctness of the Teacher.

Theorem 11 M(w)||M1 |= ∀G(p ∨ IsIn(err)) iff w ∈ Aw.

4 It is ok to require p on a prefix leading to state err, since Aw is prefix closed for safety
properties.
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Fig. 4. The conjecture DFA C (left) and the state machine A(C) (right)

4.3 Conjecture Queries

A conjecture of the L∗ algorithm is a DFA over Σ. Our framework first transforms
this DFA, C, into a state machine A(C). Then, Step 1 and Step 2 are applied in
order to verify the correctness of A(C).

Constructing a State Machine From a DFA: A DFA is a five tuple C =
(Q,α, δ, q0, F ), where Q is a finite non-empty set of states, α is the alphabet,
δ ⊆ Q × α × Q is a deterministic transition relation, q0 ∈ Q is the initial state,
and F ⊆ Q is a set of accepting states. For a string w, δ(q, w) denotes the state
that C arrives at after reading w, starting from state q. A string w is accepted by
C iff δ(q0, w) ∈ F . The language of C, denoted L(C), is the set {w|δ(q0, w) ∈ F}.
The DFAs returned by the L∗ algorithm are complete, minimal, and prefix-closed.
Thus they contain a single non-accepting state, qerr, and for every σ ∈ α and
q ∈ Q, δ(q, σ) is defined.

The alphabet α of the DFA in our framework is exactly Σ. Given a DFA C =
(Q,Σ, δ, q0, Q \ {qerr}), we construct a state machine A(C) where EV (A(C)) =
EV (Σ). We then show that A(C) represents L(C), i.e., for every execution ex
over EV (Σ), ex ∈ Lex(A(C)) iff there exists w ∈ L(C) s.t. ex ⊲ w.

Def. 12 [A(C) Construction] Let C = (Q,Σ, δ, q0, Q \ {qerr}). A(C) includes
3 states: init, end and err, where init is the initial state. A(C) includes a single
variable qs whose domain is Q, initialized to q0. A(C) has the following transi-
tions: (1) For every q ∈ Q and σ = (t, (e1, .., en)) ∈ Σ where δ(q, σ) = q′ add a
compound transition labeled with t[qs = q]/qs := q′;GEN(σ) from init to end (if
q′ 6= qerr) or to err (if q′ = qerr).
(2) Add a transition with no trigger, guard or action from end to init.

Example. For Sys = server||client and ϕ = ∀G(¬(InQ(grant1)∧InQ(deny1)),
the conjecture DFA C returned from the L∗ algorithm, and state machine A(C)
representing L(C), are presented in Fig. 4.

The construction ensures that for every t ∈ trig(Σ) and for every q ∈ Q there
exists a transition with trigger t and guard qs = q. That is, as long as A(C) is
at state init in the beginning of an RTC step, it does not discard events. Also,
according to the semantics of state machines, every RTC step that starts at state

88



init, either moves to state err, which is a sink state, or moves to state end and
returns to state init. The following theorem states that A(C) is indeed a state
machine representing L(C).

Theorem 13 Let A(C) be the state machine constructed for DFA C. For every
execution ex over EV (Σ): ex ∈ Lex(A(C)) iff there exists w ∈ L(C) s.t. ex ⊲ w.

After creating A(C), the Teacher uses two oracles and a counterexample anal-
ysis to answer conjecture queries.

Check [A(C)]M1〈ϕ〉: Oracle 1 performs Step 1 in the compositional rule by
model checking A(C)||M1 |= ∀G(p ∨ IsIn(err)). If the model checker returns
false with a counterexample execution cex, the Teacher informs L∗ that the
conjecture is incorrect, and gives it the word w ∈ Σ∗ s.t. cex ⊲ w to witness this
fact (w ∈ L(C) and w 6∈ Aw). If the model checker returns true, indicating that
[A(C)]M1〈ϕ〉 holds, then the Teacher forwards A(C) to Oracle 2.

Check 〈true〉M2[A(C)]: Oracle 2 preforms Step 2 in the compositional rule.
That is, it checks that for every execution ex ∈ Lex(M2), ex⇂EV (A(C))∈ Lex(A(C)).
Note that this is a language containment check. In state machines there is no
known algorithm for checking language containment. We present here a method
for this check in the special case where the abstract state machine is the state
machine A(C) previously defined. Step 2 is done by constructing a single state
machine, and applying model checking on the resulting state machine.

Given the state machines M2 and A(C), Oracle 2 constructs a new state ma-
chine, M, that is composed from modifications of M2 and A(C) as two orthogonal
regions. M is constructed so that the behavior of M2 is monitored by A(C) af-
ter every RTC step. M includes a synchronization mechanism, so that when an
event is dispatched, first the region that includes M2 executes the RTC step.
When it finishes, the region that includes A(C) executes its step only if A(C) has
a behavior that matches M2. If A(C) does not have a matching behavior, then
M moves to an error state, indicating that 〈true〉M2[A(C)] does not hold. The
general structure of M is presented in Fig. 5.

From here on, we denote M2 and A(C) that are regions in M as M̂2 and Â(C),
respectively. We add a local queue, IQ, and two local variables, rtc and tr, to M.
tr “records” the event e dispatched to M, if e ∈ trig(Σ). IQ “records” events
generated by M̂2 which are from evnts(Σ). Whenever M̂2 generates an event
from evnts(Σ), it also pushes the event to IQ. Â(C) will, in turn, check if it has
a matching behavior by observing IQ. rtc is used for fixing the order of execution
along an RTC step of M. It is initialized to 0, and as long as the monitoring
is successful, the value of rtc at the end of the RTC step of M is 0. rtc = 3
indicates that M̂2 is executing an RTC step that should be monitored. rtc = 2
indicates that M̂2 finished its execution, and Â(C) can monitor the behavior.
rtc = 1 indicates that the monitoring step of Â(C) was successful, i.e., Â(C) has
a behavior that matches M̂2. If the monitoring of Â(C) failed, then rtc at the end
of the RTC step is 2, indicating an error.
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Fig. 5. General scheme for M created from A(C) and M2

The following modifications are applied to M2 for constructing M̂2: Set rtc
to 3 on transitions that consume event e ∈ trig(Σ), and add IQ.push(e′) on
transitions that generate event e′ ∈ gen(Σ).
The following modifications are applied to A(C) (Def. 12) for constructing Â(C):

1. Add a new state called step to A(C), and for every t ∈ trig(Σ), add a tran-
sition from init to step labeled t/tr := t.

2. Every compound transition from init to end labeled with:
t[qs = q]/qs := q′;GEN(e1); ...;GEN(en) s.t. n > 0
is replaced with a transition from step to end labeled with:
[tr = t ∧ qs = q ∧ rtc = 2 ∧ IQ = (e1, ..., en)]/qs := q′; rtc := 1

3. Every compound transition from init to end labeled with: t[qs = q]/qs := q′

(no event generation), is replaced with a transition from step to end labeled
with: [tr = t ∧ qs = q ∧ ((rtc = 2 ∧ IQ = ()) ∨ rtc = 0)]/ qs := q′; rtc := 1

4. Every compound transition from init to err labeled with:
t[qs = q]/qs := q′;GEN(e1); ...;GEN(en) s.t. n > 0
is replaced with a transition from step to err labeled with:
[tr = t ∧ qs = q ∧ rtc = 2 ∧ IQ = (e1, ..., en)]/qs := q′; rtc := 2

5. Every compound transition from init to err labeled with: t[qs = q]/qs := q′

(no event generation), is replaced with a transition from step to err labeled
with: [tr = t ∧ qs = q ∧ ((rtc = 2 ∧ IQ = ()) ∨ rtc = 0)]/ qs := q′; rtc := 2

If Â(C) is at state step and rtc = 0 holds, then M̂2 discarded the event in
the current RTC step. Â(C) has a matching behavior if it has a behavior that
consumes an event and does not generate events. The transitions described in
(3) and (5) monitor RTC steps of M̂2 that consume event t and do not generate
any events, and also RTC steps that discard t. Note that items (2) and (4) (re-
spectively, (3) and (5)) are distinct in the target state (end or err) and in the
assignment to rtc on the action. The transitions in (2) and (3) monitor RTC steps
that are legal in Â(C), and transitions in (4) and (5) monitor RTC steps that are
not legal in Â(C).
The correctness of our construction is captured in the following theorem.

Theorem 14 For every ex ∈ Lex(M): ex reaches state RTCErr iff ex⇂EV (M2)∈
Lex(M2) and ex⇂EV (A(C)) 6∈ Lex(A(C)).

After constructing M, Oracle 2 model checks M |= ∀G(¬IsIn (RTCErr)).
If the model checker returns true, then the Teacher returns true and our frame-
work terminates the verification, because according to Rule AG-UML, ϕ has
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been proved on M1||M2. Otherwise, if the model checker returns false with a
counterexample execution cex, then cex is analyzed as follows.

Counterexample Analysis: Note that only M̂2 generates events. Thus, by
projecting the execution cex on {tr(e)|e ∈ trig(Σ)} ∪ {gen(e)|e ∈ evnts(Σ)} we
can obtain w ∈ Σ∗ s.t. cex ⊲ w. The Teacher executes a membership query on w,
for checking whether w is in Aw (as presented in Section 4.2). If the membership
query succeeds (i.e, w ∈ Aw), the Teacher informs L∗ that the conjecture is
incorrect, and gives it w to witness this fact (since w ∈ Aw but w 6∈ L(C)). If the
membership query fails then the Teacher concludes that 〈true〉M1||M2〈ϕ〉 does
not hold, since cex⇂EV (M2)∈ Lex(M2), cex⇂EV (M2) ⊲w and w 6∈ Aw (Theorem 8).
The Teacher then returns false.

Example. Consider the system server||client and the assumption A(C) from
Fig. 4. When checking 〈true〉client[A(C)], the model checker may return a coun-
terexample cex, represented by the word w = (e1, (req1)), (e1, (cancel1)), (e1, (req1))
(cex ⊲ w). cex⇂EV (M2)∈ Lex(client), cex⇂EV (M2) ⊲w and w 6∈ L(C).

During counterexample analysis, the Teacher performs a membership query on
w. This check fails, since there exists an execution of M(w)||server that violates
the property ∀G(¬(InQ(grant1) ∧ InQ(deny1))). Note that the property is vio-
lated even though server receives the event cancel1 before it receives the second
req1. However, there exists a behavior of the environment of M(w)||server that
causes violation of the property: if server receives event req2 after cancel1, then
when it receives the second req1 it will send deny1. Note that since every state
machine runs on a different thread, it is possible that the event grant1, previously
sent to client, was not yet dispatched. Thus, when deny1 is added to the EQ of
client, the property is violated. Since the membership query fails, we conclude that
server||client 6|= ϕ.

4.4 Correctness

We first argue correctness of our approach, and then the fact that it terminates.

Theorem 15 Given state machines M1 and M2, and a property ∀Gp, our frame-
work returns true if M1||M2 |= ∀Gp and false otherwise.

Termination: Assuming the number of configurations of M1||M2 is finite, the
weakest assumption w.r.t. M1 and ϕ, Aw, is a regular language. To prove this,
we construct an accepting automaton for Aw similarly to the construction in [12].
Since Aw is a regular language, then by correctness of the L∗ algorithm, we are
guaranteed that if it keeps receiving counterexamples, it will eventually produce
Aw. The Teacher will then apply Step 2, which will return, based on Theorem 8,
either true or a counterexample.

4.5 Performance Analysis

Our framework for automated learning-based AG reasoning is applied directly
at the state machine level. That is, the system’s components and the learned
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assumptions are state machines. However, the learning is done by applying an off-
the-shelf L∗ algorithm, whose conjectures are DFAs and its membership queries
are words. Thus we need to translate DFAs and words into state machines. On the
other hand we never need to translate from state machines back to low level rep-
resentation (such as LTSs or DFAs). It is important to emphasize that, as shown
above, the translation from DFAs and words to UML state machines is simple and
straightforward, since the state machines created do not include complex features
(such as hierarchy or orthogonality). On the other hand, a translation from UML
state machines to LTSs may result in an exponential blowup, since the hierarchy
and orthogonal structure should be flattened. Moreover, the event queues need
to be represented explicitly, causing another blowup. Note that applying such a
translation to LTSs does not influence the number of the membership or conjec-
ture queries, as the learned assumption remains the same. However, it complicates
the model checking used to answer these queries, since the system is much larger.

Our framework learns assumptions over an alphabet consisting of sequences of
events representing RTC steps of M2. We refer to this alphabet as RTC alphabet.
Note that it is also possible to apply the framework (with minor modifications)
over an alphabet consisting of single event occurrences (called event alphabet)
rather then over the RTC alphabet, while still keeping the learning at the UML
level. However, learning over the RTC alphabet is often better, as discussed below.

The complexity of the L∗ algorithm can be represented by the number of
membership and conjecture queries it needs in order to learn an unknown language
U . As shown in [28, 9], the number of membership queries of L∗ is O(n2 · k + n ·
log(m)) and the number of conjecture queries is at most n−1, where n represents
the number of states in the learned DFA, k is the size of the alphabet, and m is
the size of the longest counterexample returned by the Teacher. This results from
the characteristics of L∗, which learns the minimal automaton for U , and from
the fact that each conjecture is smaller than the next one.

In theory, the size of the RTC alphabet might be much larger than the size
of the event alphabet. This happens when every possible sequence of events is a
possible RTC step of M2. However, in practice typical state machines exhibit only
a much smaller number of different RTC steps. Moreover, the number of states
in the DFA QRTC learned over the RTC alphabet may be much smaller than
the number of states in the DFA Qevnt over the event alphabet. This is because a
single transition in QRTC might be replaced by a sequence of transitions in Qevnt,
one for each of the events in the RTC.

The above observations are demonstrated in the following example.

Example. We re-visit the example presented throughout section 4.
Sys = server||client where server is M1, client is M2, and ϕ = ∀G(¬(InQ(grant1)∧
InQ(deny1))). The final DFA learned when using event sequences is presented in
Fig. 4(a). The total number of membership queries is O(32 · 5+3 · log2) and there
are 2 conjecture queries.

If we apply learning over single event occurrence, then there are O(42 · 5 + 4 ·
log3) membership queries and 3 conjecture queries, since the resulting DFA has 4
states and the alphabet is {tr(e1), tr(grant1), tr(deny1), gen(req1), gen(cancel1)}.
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5 Conclusion

We presented a framework for applying learning-based compositional verification
of behavioral UML systems. Note that our framework is completely automatic; we
use an off-the-shelf L∗ algorithm. However, our Teacher works at the UML level.
In particular, the assumptions generated throughout the learning process are state
machines. From the regular automaton learned by the L∗ algorithm, we construct
a state machine which is a conjecture on M2. Also, the Teacher answers mem-
bership and conjecture queries by “translating” them to model checking queries
on state machines. Our framework is presented for Sys = M1||M2 where both
M1 and M2 are state machines. However, M1 and M2 can both be systems that
include several state machines, as long as the state machines of M2 run on a single
thread. If M2 includes multiple state machines M2

1 ||...||M2
k that run on a single

thread, then we can construct a single state machine M̃2 where each M2
i is an

orthogonal region in M̃2. The executions of M̃2 are equivalent to those of M2. We
can then apply our framework on M1||M̃2.

In the future we plan to investigate other assume-guarantee rules in the con-
text of behavioral UML system. For example, we would like to define a framework
for checking [A1]M [A2]. Such a framework will enable us to apply recursive invo-
cation of the AG rule, where M2 includes several state machines.
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Abstract. Computation offloading is a key concept in Mobile Cloud
Computing: it concerns the capability of moving application components
from a mobile device to the cloud. This technique, in general, improves
the efficiency of a system, although sometimes it can lead to a perfor-
mance degradation. To decide when and what to offload, we propose the
use of a method for determining an optimal infinite scheduler, which
is able to manage the resource assignment of components with the aim
of improving the system efficiency in terms of battery consumption and
time. In particular, in this paper we define a cost/reward horizon method
for Mobile Cloud Computing systems specified in the language MobiCa.
By means of the model checker UPPAAL, we synthesize an optimal in-
finite scheduler for a given system specification. We assess our approach
through a case study, which highlights the importance of a scheduler for
reducing energy consumption and improving system performance.

1 Introduction

In the last few years, the ubiquity of the Internet and the increasing use of mo-
bile devices has changed the mobile application market. The majority of these
applications are available everywhere at any time with a heavy traffic over the
network and a high computation demand. These characteristics require a large
amount of resource usage, especially concerning battery lifetime, in limited de-
vices. The current technological constraints have led to the emergence of a new
concept called Mobile Cloud Computing (MCC) [1,2]. MCC is a new paradigm
given by the combination of mobile devices and cloud infrastructures. This mix
exploits the computational power of the cloud and the ubiquity of mobile de-
vices to offer a rich user experience. It relies on the offloading concept, that is the
possibility of moving the computation away from a mobile device to the cloud.

The evolution of power-saving approaches at hardware level has led to mobile
devices that can adapt the speed of their processors. This allows devices to save
energy, but it is not powerful enough in case of power hungry applications. Since
battery life is the most important feature in mobile devices according to their
users [3], computation offloading is clearly a cheaper alternative or a valid partner
to the hardware solutions to improve performance and efficiency.
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Unfortunately, the use of remote infrastructures does not always come with-
out a cost, as sometimes computation offloading may degrade the application’s
performance. In general, a good rule of thumb is to offload an application com-
ponent only if the cost of its local execution is greater than the cost for the
synchronization of the input and output data plus that of the remote execution.
This could be highly influenced by network latency, bandwidth, computational
power of the mobile device, and computational requirements of the code to of-
fload. Notably, in the issues discussed above, when we talk about cost we consider
both time and the battery energy required to execute the application compo-
nent. Therefore, in this field it is critical for the developer to assess the cost of
the application execution during the development phase, in order to identify the
best trade-off between energy consumed and performance.

The decision of whether to offload a given application component can be
taken by means of a set of rules, i.e. the so-called scheduler. By applying the
scheduler rules, we obtain a sequence of offloading choices, called schedule, that
should allow the system to reach the desired goals while improving performance
and reducing battery consumption.

In this paper, we take into consideration schedulers that produce infinite
schedules ensuring the satisfaction of a property for infinite runs of the appli-
cation. This is particularly useful for MCC, where applications are supposed
to provide permanent services, or at least to be available for a long period. In
particular, considering that our model is equipped with constraints on duration,
costs and rewards, we are interested in identifying the optimal schedulers that
permit the achievement of the best result in terms of energy consumption and
execution time. In fact, over infinite behaviors, it is possible to recognize a cyclic
execution of components that is optimal and is determined by means of the
limit ratio between accumulated costs and rewards. Consequently, an optimal
scheduler is given by maximizing or minimizing the cost/reward ratio.

We propose here a cost/reward horizon method for MCC systems. We focus
on a domain specific language (DSL), called MobiCa [4], that has been devised
for modelling and analysing MCC systems. The use of a DSL increases the pro-
ductivity for non-experts as, due to its high-level of abstraction, it keeps MCC
domain concepts independent from the underlying model for the verification.
Since the semantics of MobiCa is given in terms of a translation into networks
of Timed Automata (TA), we show how the problem of designing and synthe-
sising optimal schedulers can be solved by using the well-known model checker
UPPAAL and the cost/reward method. Moreover, our approach also allows the
developer of MCC systems to define a custom scheduler and compare its quality
vis-a-vis the optimal one. In particular, by performing analysis with the statisti-
cal model checker UPPAAL-SMC [5] we are able to precisely quantify how much
the custom scheduler differs from the optimal one, to understand if the custom
scheduler is more suitable for time or energy optimization, and to simulate its
behavior in order to study how it scales as system executions grow longer.

Although the optimal scheduling research field already provides many differ-
ent techniques, we believe that model checking is an interesting approach for our
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Systems: Sys ::= (c, b, n,m) . Ã
∣∣ c . Ã

∣∣ Sys1|Sys2
Applications: A ::= 〈F̃ ;S〉
Fragments: F ::= f [i,m, s, o]

Structure: S ::= f1 Op f̃2
∣∣ S1 ; S2

Operators: Op ::= −→
∣∣ 99K

∣∣ −�

Table 1. MobiCa syntax

purposes, due to the flexibility provided by the use of logics for characterizing
different system properties and to its capability of performing analysis through
optimization techniques already implemented in model verification, which can
be fruitfully exploited for designing schedulers for MCC systems.

We illustrate our approach through a simple running example, and show its
effectiveness and feasibility by means of a larger case study.

The rest of the paper is structured as follows. Section 2 presents syntax
and semantics of the MobiCa language. Section 3 introduces our method for
synthesising optimal schedulers for MCC systems, while Section 4 illustrates
how statistical model checking can be used for evaluating the performance of
schedulers. Section 5 shows our approach at work on a navigator case study.
Finally, Section 6 reports our conclusions and describes future work.

2 The MobiCa language

In this section we recall syntax and semantics of the MobiCa language [4]. It is
designed to model MCC systems and, in particular, permits to specify both the
contextual environment where an MCC application will run and its behavior.

2.1 Language syntax

Table 1 shows the syntax of MobiCa given as BNF grammar. A system in MobiCa
is expressed by a set of mobile devices and cloud machines composed in parallel.
A typical example of mobile device is a smartphone, a tablet or any kind of
device with limited computational and resource capabilities. A mobile device
(c, b, n,m).Ã consists of a container of applications Ã (where x̃ denotes a tuple of
elements of kind x) and of a tuple of device information (c,b,n,m), which in order
denote: computational power (that is the number of instructions executed per
second), battery level, network bandwidth and used memory. A cloud machine
c . Ã is also a container of installed applications Ã, but as device information it
only specifies the number c of instructions executed per second. An application A
is organized in components F̃ , called ‘fragments’, whose composition is described
by a structure S. A fragment F can be a single functionality, a task or an action,
derived by partitioning the application in parts. It is described as a name f
that uniquely identifies the fragment, the number i of instructions composing
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it, the amount m of memory required at runtime, the amount s of data to be
transferred for synchronization in case of offloading, and finally a boolean value o
indicating whether the fragment is designed to be offloadable or not. A structure
is a collection of terms of the form f1 Op f̃2, where from the source fragment
(f1) on the left of the operator Op the execution can proceed with one or more
target fragments (f̃2) defined on the right, according to three types of operators:
– Non-deterministic choice (−→) indicates that the execution will progress

from the source fragment to one of the target fragments, which is non-
deterministically selected.

– Sequential progress (99K) allows the computation to sequentially progress
from the source fragment (on the left of 99K) to each fragment in the ordered
tuple (on the right of 99K). If the tuple contains more than one fragment,
after the execution of each of them the computation should go back to the
source fragment.

– Parallel execution (−�) allows the execution to progress from the source
fragment to all the target ones, by activating their parallel execution.

If we have more operators for the same source fragment, the system will non-
deterministically choose among them. Notably, self-loops are disallowed.

Below we show a scenario where an optimal infinite scheduling is necessary
for minimizing energy consumption and improving system performance.

Example 1 (A simple application). The example in Figure 1 is inspired by one
from [6] and graphically describes a possible MobiCa application A. The ap-
plication is composed of three fragments, f0, f1 and f2, connected by means
of the non-deterministic operator (−→) and by the sequential operator (99K).
Since the application behavior is deterministic in this case, the unique run
is composed by an initialization phase f0 → f2, followed by an infinite loop
f2 → f0 → f2 → f1 → f2. Each fragment of the sequence, can be executed
either on the mobile or in the cloud, with the only requirement of maintaining
the data consistent. For consistency we intend that either a fragment is executed
on the same location of its predecessor or at a different location only after the
result of the predecessor has been synchronized.

In the figure, the fragments are annotated with 4 parameters; in order, we
have: the execution time on the mobile device (given by the number of instruc-
tions divided by the mobile computation power, i.e. i/c), the execution time on

Application structure:

f0 −→ f2;
f2 99K (f0, f1);
f1 −→ f2

Fig. 1. A simple example of a MobiCa application
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Fig. 2. Schedules for the simple application

the cloud, the synchronization time of the results on the bus (given by s/n)
and a boolean value representing the offloadability of the fragment (a false value
indicates that only the local execution is admitted, as in the case of f0). The
graphical notation in Figure 1 is formalized in terms of the so-called System
Graph in Section 3 (Definition 1). Notably, the memory parameters introduced
in MobiCa are not considered in this particular formalization.

An infinite scheduler for the simple application shown in Figure 1 should
provide a sequence of execution choices for each of the three fragments between
the available resources. A schedule is optimal if the total execution time or cost is
minimum, considering that the energy consumption per time unit for the mobile
device is 5 when it is in use, 1 in the idle state, and 2 for the synchronization.

The Gantt chart in Figure 2 depicts three possible schedules for the proposed
example application. For each of them, we indicate the location of execution be-
tween mobile and cloud, and the use of the bus. The values of T and E at the
end of the sequence are the time and the energy required by the scheduler for
computing a complete loop cycle. In the first schedule, the computation is main-
tained locally for all fragments; this behavior is reasonable when the network is
not available. Another approach might be to maintain the computation locally
only for the non-offloadable fragments (in our case only f0) and to try to move
the computation remotely as soon as possible; this allows one to manage the
task congestions in the mobile device. The third schedule instead takes into con-
sideration the sequence of offloadable fragments and executes the computation
remotely only when the synchronization of data is minimal. ut

2.2 TA-based semantics

We describe here the semantics of MobiCa, given in terms of a translation to
networks of Timed Automata (TA). Such a semantics can indeed be used to
solve the previously described scheduling problems, by resorting to the UPPAAL
model checker. We refer the interested reader to [4] for a more complete account
of the MobiCa semantics, and to [7] for the presented UPPAAL model.
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−→ f0 f1 f2
f0 0 0 1
f1 0 0 1
f2 0 0 0

−� f0 f1 f2
f0 0 0 0
f1 0 0 0
f2 0 0 0

99K f0 f1 f2
f0 0 0 0
f1 0 0 0
f2 1 2 0

Table 2. Operators translation

The translation is divided in two parts: the passive part, which focusses on
resources, and the active one, which focusses on the applications. Thus, the TA
corresponding to a given MobiCa system is the composition of the results of the
passive and active translations merged together by means of a global declaration.
Below we describe the details of the translation in terms of UPPAAL models.

Global declaration. The global declaration consists of all the shared variables
used for the synchronization of fragments, clocks for keeping track of time, and
variables stating the internal state of the resources. In the global declaration
we find also the structure S of the application declared as an adjacency matrix.
A structure consists of three n × n matrices, one for each transition operator,
where n is the length of the F̃ . Let mij be the (i,j ) entry of a matrix, mij > 1 if
the ith and jth fragments are connected, and 0 otherwise. Notably, the diagonal
of each matrix is always zero, as self-loops are not admitted. Table 2 shows
the corresponding three adjacency matrices, related to the example shown in
Figure 1. In particular, we have:
(−→): the non-deterministic transition for fragment fi is activated if rowi has
non-zero cells, and the next fragment to be activated is non-deterministically
selected in {fj | mij = 1};
(−�): the parallel transition is similar to the non-deterministic one, with the
difference that the fragment fi activates all the fragments fj with mij = 1;
(99K): the sequential operator matrix is slightly different from the previous ones,
as the values are not only 0 or 1. These values must be interpreted as a sequence
defining the order in which the target fragments are activated for each execution
of the source fragment. The activation of the sequential operator on a fragment
excludes the other operators until the sequence of activation is terminated. In our
example, fragment f2 activates first the execution of f0 and then the execution
of f1 (see the last row of the matrix at the right-hand side in Table 2).

Fragments. The TA for a generic fragment is depicted in Figure 3; the template
is parametric, so that it is a valid representation for each fragment of the appli-
cation. The execution of the fragment starts from the initial location where it is
waiting for the activation. The activation is managed by the array activated[] as
follows: whenever the element in the array corresponding to the fragment index
becomes true, the corresponding fragment can move to the ready location. In this
latter location, it can continue its execution on the mobile device or the cloud,
depending on the evaluation of the guards on the transitions. They state that the
fragment can be executed locally only if the the results of the previous fragment
are updated locally (result[previous[id]][0]==1 ), or remotely only if they are
updated remotely and the fragment is offlodable (result[previous[id]][1]==1 and
Info[id].isOffloadable==true). When the execution of the fragment is completed,
it can proceed towards either the network location, in order to synchronize the
results locally and remotely (result[id][0]=1, result[id][1]=1 ), or the initial loca-
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Fig. 3. Fragment translation

tion by following one operator in the structure. Indeed, the use of each operator
is rendered as an outgoing transition from the completed location to the init one;
these transitions are concurrent and enabled according to the corresponding ad-
jacency matrix, defined in the global declaration.

Resources. Each kind of resource (i.e., mobile device, cloud and bus) is translated
into a specific TA; since these TA are similar, we show here just the one for the
mobile device (Figure 4) and, for the sake of presentation, we describe it in terms
of a general resource. A resource can be in the idle state, waiting for some frag-
ment, or inUse, processing the current fragment. When the resource synchronizes

Fig. 4. Mobile translation

with a fragment, it resets the local
clock and remains in the inUse state
until the clock reaches the value cor-
responding to the occupation time
for the current fragment. Before re-
leasing the resource, the battery level
of the mobile device is updated ac-
cording to the permanence time and the energy consumed by the resource. In
this model, we assume that no energy is consumed if there is nothing to compute,
and the energy power consumed by the cloud during its execution corresponds
to the energy used by the mobile in the idle state waiting for the results.

3 Synthesis of optimal infinite schedulers for MCC

In this section, we formalize the notion of optimal infinite scheduler in terms of
two cost functions on a System Graph (SG). A SG provides a graphical represen-
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tation of a MobiCa application, which is useful as an intermediate model between
the specification and the resulting network of TA generated by the translation.

Definition 1 (System Graph). Given an application 〈F̃ ;S〉 installed in a sys-
tem with a mobile device defined by information (c, b, n,m) and a cloud machine
defined by c′, its system graph SG is a tuple 〈N,−→, 99K,−�, T, E,O〉 where:

– N = {f | f [i,m, s, o] ∈ F̃} is a set of fragment names.
– −→, 99K, −� ⊆ N × N are three transition relations defined as f−→ f ′

(resp. f 99K f ′, f−� f ′) iff f ′ ∈ f̃ for some f̃ such that f−→ f̃ ∈ S (resp.
f 99K f̃ ∈ S, f−� f̃ ∈ S). We use f � f ′ to denote either f−→ f ′ or
f 99K f ′ or f−� f ′.

– T : N × {M,C,B} → N gives the execution time of a fragment on a re-
source (where M is the mobile device, C the cloud, and B the bus); given
f [i,m, s, o] ∈ F̃ , we have: T (f,M) = bi/cc, T (f, C) = bi/c′c, and T (f,B) =
bs/nc.

– E : {M,C,B} → N is the energy, expressed as a natural number, consumed
per time unit by the mobile device when a given resource is in use.

– O : N → {0, 1} represents the possibility of offloading a fragment (value 1)
or not (value 0); given f [i,m, s, o] ∈ F̃ , we have O(f) = o.

Notably, an SG is completely derived from the information specified in the corre-
sponding MobiCa system except for the energy function E. Energy consumption
information, indeed, is added to that provided by MobiCa specifications in order
to enable the specific kind of analysis considered in this work.

A path on SG is a finite sequence η = f0� f1� ...� fk (k ≥ 0). Notably,
in a path, parallel activations of fragments are interleaved.

Definition 2 (Scheduler). Given a system graph SG, a scheduler is a partial
function Θ : N × Op × N → {0, 1}2 that, given a transition f � f ′ in SG,
returns a pair of values πs, πt ∈ {0, 1} which indicate the execution location of
the source fragment f and of the target fragment f ′, respectively, where 0 denotes
a local execution and 1 a remote one.

When a scheduler is applied to a transition of the corresponding SG, it returns
information about offloading decisions for the involved fragments. By applying a
scheduler Θ to each transition of a sequence of transitions, i.e. a path η, we obtain
a schedule δ, written Θ · η = δ. A schedule consists of a sequence of triples of
the form (f, π, β), each one denoting a fragment f , belonging to the considered
path, equipped with its execution location π and the synchronization flag β.
Parameters π, β ∈ {0, 1} indicate the local (π = 0) and remote (π = 1) execution
and the need (β = 1) or not (β = 0) of data synchronization for f . Formally,
Θ · η = δ is defined as follows: let f and f ′ being two consecutive fragments
in the path η, there exist in δ two consecutive triples (f, π, β) � (f ′, π′, β′) iff
Θ(f,�, f ′) = (πs, πt) s.t. π = πs, π

′ = πt and β = |πs − πt|. Notice that, as Θ
is a partial function, there may be transitions in η that are not in δ; for such
transitions the schedule does not provide any information about the offloading
strategy to apply, because they are not considered by the scheduler.
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Taking inspiration from the approach in [8], we define two cost functions. In
particular, we consider the cost of executing a given path in the considered SG
using the scheduler, i.e. the cost functions are defined on schedules.

Definition 3 (Time and energy costs). The time and energy costs of a
schedule δ for a given SG = 〈N,−→, 99K,−�, T, E,O〉 are defined as follows:

Time(δ) =
∑

(f,π,β)∈δ ( (1− π)× T (f,M) + π × T (f, C) + β × T (f,B) )

Energy(δ) =
∑

(f,π,β)∈δ ( (1− π)× T (f,M)× E(M) + π × T (f, C)× E(C)

+ β × T (f,B)× E(B) )

The function Time(δ) calculates the total time required by the schedule δ, i.e.
the time for executing a path of SG according to the scheduler that generates
δ. For each fragment f in the system, we add the time T (f,M) if the fragment
is executed locally (π = 0), or the time T (f, C) if the fragment is executed
remotely (π = 1). The function considers also the synchronization time T (f,B)
if two consecutive fragments are executed at different locations (β = 1).

The function Energy(δ) calculates the total energy required to complete the
scheduled path. The difference with respect to the previous function is that
here the time of permanence of a fragment in a resource is multiplied by the
corresponding energy required per time unit.

Relying on the cost functions introduced above, we can have the time-optimal
scheduler ΘT and the energy-optimal scheduler ΘE for a given SG, which de-
termine the sequence of actions that generates the less costly combination of
resources, in terms of Time(δ) and Energy(δ) respectively, for a path in SG.

Example 2 (Time and battery costs for the small application). We evaluate here
the schedules proposed in Example 1 (Figure 2) using the cost functions intro-
duced above. Notice that in the calculation we consider only the cyclic part of
the application omitting the initialization that is not relevant in terms of an
infinite scheduler. Table 3 reports the time and energy consumed for the three
schedules calculated according to Definition 3.

Evaluating the results, the time-optimal scheduling for the application is
achieved in Schedule 3, that is (f0, 0, 0) � (f2, 0, 1) � (f1, 1, 0) � (f2, 1, 1),
with a total time cost T3 = 28. The offloading choices for achieving such result
are formalized in terms of the scheduler (written here using a notation based on
triples) ΘT={(f0−→ f2,0,0),(f2 99K f1,0,1),(f1−→ f2,1,1),(f2 99K f0,1,0)}. On
the other hand, Schedule 2, that is (f0, 0, 1)� (f2, 1, 0)� (f1, 1, 0)� (f2, 1, 1),
is the energy optimal one, with a total energy consumption E2 = 83. The corre-
sponding scheduler is ΘE={(f0−→ f2,0,1),(f2 99K f1,1,1),(f1−→ f2,1,1),(f2 99K
f0,1,0)}. From this example it is clear that there may not be a correspondence be-
tween energy and time consumption, since we have different cost results. Hence,
defining a scheduler optimized for more resources is not always a simple task. ut
Sched. T ime Energy

1 T1=(3 + 10 + 16 + 10) = 39 E1=(3 + 10 + 16 + 10)× 5 = 195
2 T2=(3 + 25 + 3 + 2 + 3 + 5) = 41 E2=(3× 5 + 25× 2 + 3× 1 + 2× 1 + 3× 1 + 5× 2)=83
3 T3=(3 + 10 + 5 + 2 + 3 + 5) = 28 E3=(3× 5 + 10× 5 + 5× 2 + 2× 1 + 3× 1 + 5× 2)=90

Table 3. Time and energy costs of the schedules for the simple application
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Fig. 5. cost/reward Horizon Method

3.1 Cost/reward horizon method

In order to find the optimal scheduler for an application with infinite behavior, as
discussed above, we propose a cost/reward horizon method. From the literature
[9, 10], we know that the optimal ratio is computable for diverging and non-
negative rewards systems.

In what follows we first present the basic concepts behind our cost/reward
method and then we show how the optimal infinite scheduling problem can be
solved using TA and the UPPAAL model checker. The behavior of the appli-
cation is the starting point for defining an optimal infinite scheduler. It can be
described as a set of paths. For each path UPPAAL will generate all possible
schedules and will choose the best one according to a specific ratio (clarified
below). The chosen schedule is indeed the less costly one and, hence, it can be
used to synthesize the rules that compose the optimal scheduler.

Let’s start defining the ratio of a finite path η of a SG as follows:

Ratio(η) = Cost(η)/Rewards(η)

where Cost() and Rewards() are two functions keeping track of the accumulated
cost/reward along the path η. Now, we extend this ratio to an infinite path
γ=f0�, ... ,� fn� ..., with γn the finite prefix of length n; the ratio of γ is:

Ratio(γ) = limn→∞(Cost(γn)/Rewards(γn))

An optimal infinite path γo is the one with the smallest Ratio(γ) among all
possible schedules.

Finding the smallest ratio is not always a tractable problem, but it is possible
to improve its tractability reducing the problem to a given horizon. From this
new point of view, we want to maximize the reward in a fixed cost window.
Notice that, the cost window should be of an appropriate length, in order to
complete the execution of at least one application cycle.

This technique can be implemented in UPPAAL considering the query:

E[] not(f1.Err, ..., fn.Err) and (Cost≥C imply Reward≥R) (1)

This query asks if there exists a trace were the system keeps running without
errors and whenever the predefined cost C is reached, the accumulated reward
should be at least R (Figure 5).
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Fig. 6. Reset TA

For verifying the satisfaction of the above formula,
the TA model includes an additional template (Fig-
ure 6) implementing the cost window using the reset
mechanisms. It consists of one state and a self-loop
transition, where each time the simulation reaches the
cost C the transition will reset the accumulated Costs
and Rewards. In this way, the behavior of the appli-
cation is split in cost windows and in each of them the accumulated rewards
should satisfy the formula Reward≥R.

Since we are looking for the maximum reward given a predefined cost, for
finding the optimal scheduler it is necessary to discover the maximum value of
R for which the formula (1) holds. The resulting trace generated by a satisfiable
formula has the structure depicted in Figure 5. The trace starts with some initial
actions corresponding to the application start-up and leads to its cyclic behavior.
As shown in the figure, the approach does not consider all possible traces, but
only the ones that satisfy the constraints of the query. The candidate schedule
is the piece of trace that is highlighted in red, which means that UPPAAL has
found a cyclic behavior in the application whose execution satisfies the formula
forever. This means that we have found an optimal schedule from which it is
possible to derive the set of rules that will generate the optimal scheduler.

3.2 The horizon method at work

In this section we show how the cost/reward horizon method can be applied to
MCC systems and, in particular, to the example presented in Figure 1.

We are interested in finding a time-optimal and/or battery-optimal scheduler.
By applying the method presented in Section 3.1 to a MCC system, given an infi-
nite path γ, the time- and energy-based ratios become rT = limn→∞(Time(γn)/
Fragments(γn)) and rE = limn→∞(Energy(γn)/Fragments(γn)), respectively.
Thus, the accumulated costs are calculated by the functions Time() and Energy()
given in Definition 3. The rewards are instead defined by a function Fragments() :
η → N which counts the number of fragments executable in the fixed window.
The more fragments we are able to execute with the same amount of time or
energy, the better the resources are used.

To find the minimum time-based ratio using the UPPAAL model checker we
can ask the system to verify a query of the following form:

E[] forall(i:pid t) not(Fragment(i).Err) and (GlobalTime≥300 imply

(fragments>41))

In this specific case we want to know if, in a fixed window of 300 units of time,
it is always possible to execute 41 fragments. To find the minimum ratio we
have to iterate on the number of fragments in the denominator in order to find
the maximum number for which the query holds. In our running example, the
maximum value that satisfies the query is 41, giving a ratio 300/41 = 7.31.
The resulting trace generated by the presented query results in an execution
sequence that can be synthesized as the Schedule 3 shown in Figure 2.
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The query for determining the energy-based ratio is defined as:

E[] forall(i:pid t) not(Fragment(i).Err) and (battery≥900 imply

(fragments>43 and battery≤930))

In this case, the resulting ratio is 900/43 = 20.93. thus, the system requires
20.93 units of battery per fragment. Notice that in this query there is an extra
constraint defined as an upper bound on the right side of the imply keyword.
This is because we can have different schedules satisfying the formula, but we
consider only the ones that exceed the battery threshold as little as possible.
The resulting trace from the energy query gives us the energy optimal schedule,
that in this case can be synthesized as the Schedule 2 in Figure 2.

To assess the truthfulness of the cost/horizon method, we can compare the
obtained results with the ones calculated directly in the Gantt chart in Figure 2.
The energy ratio for Schedule 2 on one loop is given by 83/4 = 20.75. The slight
difference in the results is due to the size of the cost window. In the Gantt chart
we are considering a window that fits perfectly four fragments and, hence, we
do not have any incomplete fragment that affects the final result as in the case
of the horizon method, but the approximation is really close to the best case.

4 Evaluating performance of a custom control strategy

In this section, we present a technique for evaluating the performance of a cus-
tom scheduler using the Statistical Model Checking facilities [5,11] provided by
UPPAAL (the model checker is called UPPAAL-SMC, or SMC for short).

Let’s suppose now that a developer wants to define his own scheduler for an
application and to know how much the resulting custom scheduler is close to the
optimal one or to calculate some statistics. Possible reasons for customizing a
scheduler could be problems in the development phase related to hardware cost
or less quantitative issue, such as security and privacy that force the developer
to introduce a static scheduler.

The new personalized scheduler in UPPAAL is modeled as a TA template
called Manager. The duty of this manager is to decide on which resource each
fragment should be executed. Considering the model presented in Figure 3, here
we do not have anymore the decision in the ready location between mobile and
cloud transition, but just a transition that is synchronized with the manager. The
manager operates as a mediator, between the fragments and the resources. Once
the manager receives notice of a new fragment to execute, it decides according to
some rules in which resource’s waiting list to move it. The resources are modeled
following a busy waiting paradigm, where every time the queue is not empty, a
new fragment is consumed. Before executing the assigned fragment, the resource
checks the execution location of its predecessor; if data synchronization is not
required, it just executes the fragment, otherwise it synchronizes the data and
then processes it. Once the computation is completed, the resource returns the
control back to the executed fragment and passes to the next one.
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4.1 A custom scheduler

Fig. 7. Manager TA

The manager can contain different kinds
of rules. One possibility is to define a rule
for each fragment or to specify a more
general rule that can be applied to the
whole application. For example, to exe-
cute a fragment remotely when it is of-
floadable is a very simple rule that a devel-
oper can consider to implement in a MCC system. Figure 7 depicts the manager
implementing this custom strategy. In detail, after a fragment is synchronized
with the manager, the latter decides to enqueue the fragment on the correspond-
ing waiting list according to the guard Info[x].isOffloadable. In this way, if
the fragment x is offloadable it is queued locally, otherwise remotely.

Looking more closely at the custom scheduler, we notice it realises the same
behavior of Schedule 2 in Figure 2, which we already know to be energy-optimal.

4.2 Evaluation via SMC

As previously said, usually a customized scheduler is defined for reasons related
to particular conditions of the environment. Here, we perform some statistical
analysis to quantify how much the customized scheduler above is far from the
optimal one, in order to have a quantitative measure of any performance loss.
In particular, below we present some verification activities and compare the ob-
tained results with the time/energy-optimal scheduling we found in Section 3.2.

By evaluating the following queries using the SMC tool, we can determine
the expected maximum value for the number of fragments that can be executed
in a given temporal window:

E[time<=300;2000](max:fragments) E[battery<=900;2000](max:fragments)

These two queries aim at finding the expected value over 2000 runs in a window
of 300 units of time and 900 units of battery, respectively. The results are: 29
fragments for the first query and 41 for the other one. Comparing these results
with those of optimal ones, we can clearly see that the scheduler defined by the
developer is almost as efficient as the energy-optimal one. Indeed, they differ
only for 2 fragments in the energy case. Instead, the performance of the custom
scheduler is very far from that of the time-optimal scheduler, as they differ for
14 fragments.

The proposed strategy can be also evaluated to see if it is closer either to the
energy-optimal scheduler or to the time-optimal one. This can be achieved by
checking if the probability to reach the time-optimal scheduler is greater than
the probability to reach the energy-optimal scheduler.

Pr[time<=300](<> fragments>=43)>=Pr[battery<=900](<> fragments>=41)

The result of this query is false with probability 0.9, meaning that the prob-
ability of reaching the energy-optimal scheduler is greater than the one for the
time-optimal scheduler.
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We can also simulate the system behavior executing the following commands:

simulate 1[time<=300]{battery,fragments}
simulate 1[battery<=900]{time,fragments}

Their results are shown in Figure 8. On the left-hand side, we have the number of
fragments compared with the consumed battery. On the right-hand side, instead,
we have the ratio of executed fragments and required time.

Fig. 8. Simulation results

5 Experiments with a navigator case study

In the previous sections we have illustrated the proposed approach by means
of a simple application. In this section, we aim at showing the effectiveness
and feasibility of the approach by means of a larger case study, drawn from
[4], concerning a navigator application. This kind of application is one of the
most complex and used in mobile devices. This is an interesting case study
for this work from the point of view of its complexity and its strong real-time
requirements to be satisfied at runtime. In particular, the greatest challenge for
navigation system developers is to provide an application that is able to find
the right route, and recalculate it as quickly as possible in case of changes,
considering the current traffic condition.

The corresponding MobiCa system is represented in Figure 9. The system
starts when the user inserts the destination in the Configuration panel that
consequently activates the Controller. The Controller in turn asks the GPS for
the current coordinates and forwards them to the Path calculator. The Path
calculator, interacting with the Map and the Traffic evaluator, will provide a
possible itinerary. The itinerary is processed by the Navigator, which forwards
information to the Navigation Panel. This latter component, with the help of
the Voice and Speed Trap Indicator, provides the navigation service to the end
user. The Navigator is also responsible for reactivating the Controller in order
to check possible updates of the route.

We present now the results obtained using the cost/reward horizon method
applied to this case study. The complexity of this example is a good test bed
for our method. Notice that the values of the parameters used in the example
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Fig. 9. Navigator case study: MobiCa specification

are generated ad-hoc as a proof of concept. From real life we expect that the
developer can determine information about fragment instructions by perform-
ing experimentation, statistics or simply studing the complexity in the code.
The diagram in Figure 10 shows the resulting schedules synthesized from the
verification of the following queries:

E[] forall(i:pid t) not(Fragment(i).Err)

and (time≥100 imply (fragments>16 and time<120))

E[] forall(i:pid t) not(Fragment(i).Err)

and (battery≥400 imply (fragments>21 and battery<419))

The first query defines the time-optimal schedule with respect to a time window
of 100 units and with a maximum number of executed fragments equal to 16.
The obtained ratio rT = 100/16 = 6.25 was reached keeping the execution local
for almost all fragments except for f8 and f9, which are executed in parallel
remotely.

The opposite behavior is identified in the verification of the second query for
the energy-optimal case, where only three fragments are executed locally and
all the others remotely. Since the fragments f7 and f2 are not offloadable, they
are maintained locally together with the fragment f1. The choice to execute f1
locally is given by the necessity of the scheduler to wait for a suitable moment
to move the computation remotely. Clearly, moving the computation between
two non-offloadable fragments is not convenient; furthermore, sometimes it is
better to anticipate or postpone the offloading when the data synchronization is
minimal or less costly. The ratio of this scheduler is rE = 400/21 = 19.05 with
a final energy consumption equal to 272 units per cycle.

The cost/reward horizon method fits MCC systems perfectly. In particular,
during the sequential behavior of the application it tries to find the best moment
for moving the computation remotely, defining also different strategies according
to the role of the fragment. Instead, during parallel behavior, where there are
no direct relations between fragments, it tries to exploit the benefit derived by
allocating the computation both on the mobile and on the cloud.
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Fig. 10. Navigator case study: optimal schedules

As a final evaluation we present the results obtained verifying the custom
scheduler described in Section 4 on the navigator case study using SMC. Verify-
ing the expected maximum reward using the query E[battery<=400;2000](max:

fragments), we obtain a cost energy ratio rE = 400/16 = 25. Even worse
is the score obtained by trying to optimize the performance using the query
E[time<=100; 2000](max: fragments), which achieves a ratio rT = 100/5 =
20. Thus, comparing the obtained values, it is possible to notice a substantial
growth of the ratio for the custom scheduler. Since a higher ratio means a de-
crease in performance, we can claim that the strategy defined by the developer is
not a good approximation of the optimal one. Furthermore, analyzing the results
in more detail, we notice that the custom scheduler is very far from the time op-
timal, with a ratio that is four time larger than the one achieved by the optimal
scheduler. Considering instead the energy case, it is possible to reach a ratio of
25 against the 19.05 of the optimal one. Looking at these results, the developer
is aware that using his custom scheduler he can achieve a good performance if
he is interested in energy optimization, although this is not optimal.

By performing a simulation (we omit the picture due to lack of space), we can
see a significant gap between the number of executed fragments and the elapsing
of time according to the consumed battery power; there is indeed a symmetric
increase of values generated by the cyclic behavior of the application. The plot
in Figure 11, instead, represents a scheduler synthesized using a histogram. Us-
ing an appropriate simulation query, which takes into account the fragments in
execution on the resources, it is possible to represent each fragment as a col-
umn of the same height of its identifier in the specific resource. For the sake of
readability, columns referring to cloud (red lines) and mobile (green lines) are
depicted on the same level of the graph, while the network columns (blue lines)
are reported just below. A peak in the blue line means that the corresponding
fragment above requires the synchronization on the bus before its execution.

6 Concluding remarks

We provide an approach for designing schedulers for MCC systems specified in
MobiCa. Using UPPAAL, and relying on a cost/reward horizon method intro-
duced here, we are able to synthesize an optimal infinite scheduler for a mobile
application. This scheduler defines offloading choices that allow the system to
reach the best results in terms of performance and energy usage.

Related work. Optimization is a topic that is considered in many application
fields. Also in the MCC literature there is a significant effort on the optimization
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Fig. 11. Navigator case study: fragments execution

of a utility function or specific metrics for the offloading technique. Among the
most significant works, we mention RPF [12], which derives its strategy using the
direct observation of the system. It runs processes alternatively between local
and remote machines in order to determine the best choices. This technique is
not optimized for highly dynamic systems, where the parameters of the resources
change constantly, but it can be a good solution for more static environments.
Another approach based on direct observation is MAUI [8], where information
about the environment is collected and used to formulate the problem as an
optimization problem. The proposed optimization function compares the time
required for executing a process locally against the time for the synchronization
of data plus the remote execution.

The limitations of methods based on the direct observation have been ad-
dressed using the past history. The resulting systems, like Spectra [13], Chroma
[14] and Odessa [15], build a model on past inputs and use it to make predictions
or decisions rather than to observe the current system configuration.

Our approach is similar to the ones mentioned above, with the main differ-
ence that we provide a language that describes the system environment. This
language, called MobiCa, was presented for the first time in [4], and here is used
to generate an optimal infinite scheduling using the UPPAAL model checker.
Compared with the other works, we are able to foresee all the possible config-
urations of the system at design time, by providing a scheduler that is optimal
for a certain interval of parameters. The optimal infinite scheduler is generated
using the cost/reward horizon method implemented with timed automata and
solved verifying a simple query by means of the model checker. The closest re-
lated work, from which we take inspiration for the cost/reward horizon method
is presented in [9, 10], where a general version of this method was applied to
the priced automata formalism to find the best configuration of the considered
system. The flexibility of this method has permitted to obtain good results in
the MCC field, confirmed also by reasonable performances that are in the order
of seconds for the considered models.
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Future work. There are still several issues which are open for future work. A
possibility would be to extend our work in order to have an automatic procedure
for obtaining the maximum number of fragments in a given time window. Indeed
finding the optimal ratio requires one to consider several computations, that may
become unfeasible in case of high numbers. Thus, a possible idea to optimize the
methodology is to develop heuristics that allow one to reach the best result in
a faster way. Another aspect to consider is how the proposed approach can be
transferred to the technology. A possibility is to include the decision support
as part of a middleware that can provide to the developer an optimal scheduler
derived through our method. This middleware could be integrated also with the
runtime decision support proposed in [4]. Another interesting point of extension
is the re-scheduling at runtime. Indeed, a small variation of the environmental
parameters can bring to different results in the system optimization leading to
an obsolete scheduler. Thus, we need to consider its recalculation at runtime.
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Abstract. In the last years we are observing a growing interest in formalising the
execution semantics of business process modelling languages that, despite their
lack of formal characterisation, are widely adopted in industry and academia. In
this paper, we focus on the OMG standard BPMN 2.0. Specifically, we provide a
direct formalisation of its operational semantics in terms of Labelled Transition
Systems (LTS). This approach permits both to avoid possible miss-interpretations
due to the usage of the natural language in the specification of the standard, and
to overcome issues due to the mapping of BPMN to other formal languages,
which are equipped with their own semantics. In addition, it paves the way for
the use of consolidated formal reasoning techniques based on LTS (e.g., model
checking). Our operational semantics is given for a relevant subset of BPMN el-
ements focusing on the capability to model collaborations among organisations
via message exchange. Moreover, one of its distinctive aspects is the suitabil-
ity to model business processes with arbitrary topology. This allows designers to
freely specify their processes according to the reality without the need of defining
well-structured models. We illustrate our approach through a simple, yet realistic,
running example about commercial transactions.

Keywords: Business Process Modelling, BPMN Collaboration, Operational Se-
mantics

1 Introduction

Organisations, such as big companies or public administrations, nowadays operate in
complex and volatile contexts, that ask for prompt reactions to emerging changes in
order to maintain competitiveness and efficiency. To answer to such a need, in the last
years a lot of effort has been put in the definition of modelling languages and tools per-
mitting to represent and reason on different perspectives of such organisations. Among
the others, Business Process (BP) modeling is certainly the activity that received the
most attention, given its relevance in the reflection and definition of strategies for the
alignement of introduced IT systems and business activities. A BP is described as “a
collection of related and structured activities undertaken by one or more organisations
in order to pursue some particular goal. Within an organisation a BP results in the
provisioning of services or in the production of goods for internal or external stake-
holders. Moreover BPs are often interrelated since the execution of a BP often results

‹ This research has been partially founded by EU project LearnPAd (GA:619583) and by the
Project MIUR PRIN CINA (2010LHT4KM).
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in the activation of related BPs within the same or other organisations” [1]. In deriv-
ing a BP model many different information and perspectives of an organisation can be
captured [2]. Among the others we focus on: information related to the activities to
be performed (function perspective), who should perform them (organisation perspec-
tive), when they should be performed and how they are organised in a flow (behaviour
perspective). Many different languages and graphical notations have been proposed to
represent BP models with differences both in the possibility to express aspects related
to the perspectives, and in the level of formality used to define the elements composing
the notation. BPMN 2.01, which has been standardised by OMG [3], is currently ac-
quiring a clear predominance, among the various proposal, due to its intuitive graphical
notation, the wide acceptance by industry and academia, and the support provided by a
wide spectrum of modelling tools2.

BPMN’s success comes from its versatility and capability to represent BPs with
different levels of detail and for different purposes. The notation acquired, at first, ac-
ceptance within business analysts and operators, who use it to design BP models. Suc-
cessively, it has been more and more adopted by IT specialists to lead the development
and settlement of IT systems supporting the execution of a BP model. Among the var-
ious characteristics of the notation, particularly interesting is the possibility to model a
collaboration of different organisations exchanging messages and cooperating to reach
a shared business goal. Collaboration diagrams are indeed the focus of our work since
they contains enough information to assess the alignment of participants behavior, and
the message flow specified to permit successful cooperations. If from the point of view
of the notation the inter-organisation message exchange could seem a simple graphical
element, its impact is absolutely relevant. When a modelling notation is used in a ho-
mogeneous context, such as a single organisation, the precise definition of the meaning
of the various elements constituting the notation can be sometime avoided. Neverthe-
less, mutual understanding is possible thanks to the direct communications among the
involved stakeholders, and from the emergence of established and accepted practices.
This is not the case when two or more organisations are involved. In particular, in order
to correctly collaborate, the involved organisations have to share the same understand-
ing of communication mechanisms. Moreover, when a BP model includes the specifi-
cation of collaborations among more organisations, it becomes fundamental that they
can rely on a shared understanding of the model. In the last years, a relevant effort has
been devoted by the research community to provide a formal semantics to the BPMN
notation (we refer to Section 5 for an overview of major contributions on this side). In-
deed, in defining the notation, OMG did not intend to provide a rigorous semantics for
the various graphical elements; instead the meaning is given using natural language de-
scriptions, permitting a wider adoption of the notation in different contexts. The use of
formal tools to define the semantics of the various elements, and hence of a BP model,
is relevant in order to enable automatic analysis activities that allow the designers to
check if the BP satisfies desired properties or not. This aspect seems to be even more
relevant when organisations get in contact with each other and need to analyse the im-
pact of collaborative actions. Consider for instance the merging of two companies, in

1 We use BPMN or BPMN 2.0 interchangeably to refer to version 2.0 of the notation.
2 BPMN is currently supported by 75 tools (see http://www.bpmn.org for a detailed list).
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Fig. 1. Considered BPMN 2.0 Elements.

which there is not a common understanding of the models, and then the importance of
analysis activities run to get a better understanding on the impact of the integration, and
to discover flaws in the collaboration resulting from the possible integration.

In this paper, we intend to contribute to such a research effort aiming at providing
a precise characterisation of BPMN elements with a special emphasis on communica-
tion within collaboration diagrams. This is mainly motivated by the need of achieving
inter-organisation correctness, which is still a challenge [4]. More specifically, the con-
tribution of the paper is a novel formalisation that provides an operational semantics
to BPMN in the SOS style [5] by relying on the notion of Labeled Transition System
(LTS). The major benefits of our semantics are as follows:

– it is a native semantics, rather than a mapping to other formalisms (equipped with
their own semantics) like most of the proposals in the literature (see Section 5);

– it provides a compositional approach based on LTS, which paves the way for the
use of consolidated analysis techniques and related software tools (see Section 6);

– it is suitable to model business processes with arbitrary topology, without imposing
syntactical restrictions to the modeler, such as well-structuredness [6] (which, e.g.,
imposes gateways in a process to form single-entry-single-exit fragments) typically
required by other proposals (see Section 5);

– besides core elements, such as tasks, gateways, etc., it takes into account collabo-
rations and message exchange, which are overlooked by other formalisations.

The rest of the paper is organised as follows. Section 2 reports some background
material on BPMN 2.0. Sections 3 and Section 4 introduce BPMN syntax and opera-
tional semantics we propose. Section 5 presents a detailed comparison of our approach
with the related ones available in the literature. Finally, Section 6 closes the paper with
some conclusions and opportunities for future work.

2 Background Notions on BPMN 2.0

The focus of this section is not a complete presentation of the standard, but a discus-
sion of the main concepts of BPMN we use in the following. These concepts are briefly
described below and reported in Figure 1. Pools are used to represent a participant or
an organisation involved in the collaboration, and provide details on internal process
specifications and related elements. Pools are drawn as rectangles. Events are used to
represent something that can happen. An event can be a Start Event, representing the
point in which the process starts, while an End Event is raised when the process ter-
minates. Events are drawn as circles. Tasks are used to represent a specific work to
perform within a process. Tasks are drawn as rectangles with rounded corners. Gate-
ways are used to manage the flow of a process both for parallel activities and choices.
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Fig. 2. Buyer-Reseller Example (source [7] p. 223).

Gateways are drawn as diamonds and act as either join nodes or split nodes. Different
types of gateways are available, and we report here the most used ones. A XOR gateway
gives the possibility to describe choices both in input (joining) and output (splitting); it
is activated each time the gateway is reached and, when executed, it activates exactly
one outgoing edge. An AND gateway enables a parallel flow execution: when used to
split the sequence flow, all outgoing branches are activated simultaneously; when it
joins parallel branches, it waits for all incoming branches to complete before triggering
the outgoing flow. An OR gateway gives the possibility to select an arbitrary number
of outgoing edges each time it is reached; all active incoming branches must complete
before joining. Notably, even if XOR and OR splitting gateways may have guard condi-
tions in their outgoing sequence flows. In this work we do not consider such possibility,
as conditions have a significant role only when actual input values are taken into ac-
count, while our aim is to enable the verification of all possible flows of a process, and
not only those triggered by specific input values. Finally, Connecting Edges are used to
connect process elements in the same or different pools. Sequence flow is used to spec-
ify the internal flow of the process, thus ordering events, activities and gateways in the
same pool, while message flow is a dashed connector used to visualise communication
flows between organisations.

We introduce here a BPMN collaboration specification used throughout the paper
as a running example.

Running Example (1/3). Figure 2 shows an example of BPMN process which combines
the activities of a buyer organisation and a reseller one that have to interact in the market
in order to complete a commercial transaction. After the buyer organisation analyses
the market, it places its order by sending the order message to the reseller. Then, the
buyer forks into two parallel paths by means of the AND gateway G1. The upper path
receives the invoice from the reseller and settles it; in parallel the lower path receives the
products from the reseller. Finally, the two flows of the buyer synchronise at the AND
gateway G2 and the buyer stops its activities. This exchange of messages is supported
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by the behaviour of the reseller that, after receiving the order, forks its behaviour into
two parallel paths using the AND gateway G3. In the upper path, the reseller sends the
invoice and receives the payment, while in the bottom one it performs the shipment of
the ordered products. Finally, the flows of the reseller synchronise at the AND gateway
G4 and the process of the reseller ends after the order is archived. [\

It is worth noticing that we focus on the control flow and interacting aspects of
business processes. This is mainly motivated by the need of keeping the semantics of
the considered language rigorous but still manageable. Therefore, we intentionally left
out other aspects, including timed events, data objects, sub-processing, error handling,
and multiple instances. Instead, other aspects of BPMN can be easily rendered with our
syntax, such as intermediate message events that can be reconducted to tasks with an
incoming message flow. Anyway, we do not consider this restriction on the syntax as a
major limitation, because we focus on the BPMN constructs most used in practice (in-
deed, even if the BPMN specification is quite wide, only less than 20% of its vocabulary
is used regularly in designing BP models [8]).

3 BNF Syntax

The syntax of BPMN 2.0 is given in [3] by a metamodel in classical UML-style. In this
section we provide an alternative syntax, in BNF-style, that is more suitable for defining
a formal operational semantics.

The syntax is defined by grammar productions of the form N ::“ A1 | . . . | An,
where N is a non-terminal symbol and alternatives A1, . . . , An are compositions of
terminal and non-terminal symbols. In particular, in the grammar in Figure 3, the non-
terminal symbols areC, P andG, representing collaborations, processes and gateways,
respectively, while the terminal symbols are the typical graphical elements of a BPMN
model, i.e. pools, events, tasks, gateways, and edges.

Intuitively, a BPMN collaboration model is rendered in our syntax as a collection
of pools, where message edges can connect different pools. Each pool contains a pro-
cess, defined as a collection of nodes, with incoming and/or outgoing sequence edges.
Such nodes are events, tasks and (XOR/AND/OR) gateways. Notably, to obtain a com-
positional definition, each (message/sequence) edge is divided in two parts: the part
outgoing from the source node and the part incoming into the target node. In fact, a
term of the syntax can be straightforwardly obtained from a BPMN model by decom-
posing the collaboration in collection of pools, processes in collection of nodes, and
edges in two parts.

We use the following disjoint sets of names: the set of organisation names (ranged
over by o), the set of message names (ranged over by m), the set of edge names (ranged
over by e), and the set of task names (ranged over by t). As a matter of notation, we
use edges of the form m to denote edges of the form m either incoming
into or outgoing from pools/tasks.

We only consider specifications that are well-defined, in the sense that they comply
with the following four syntactic constraints:

– Distinct pools (resp. tasks) have different pool (resp. task) names.
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(Collaborations) C ::=

(Pool, kě0) o P

m1 mk

(Pool collection) | C1 C2

(Processes) P ::=

(Start event)
e

(End event) |
e

(Task, kě0) |

m1 mk

t
e1 e2

(Split gateway, hą2) | ...G
e1

e2

eh

(Join gateway, hą2) | ... G
e1

e2

eh

(Node collection) | P1 P2

(Gateways) G ::=

(XOR/AND/OR)
| |

Fig. 3. BPMN Syntax

– In a collaboration, for each message edge labelled bym outgoing from a pool, there
exists only one corresponding message edge labelled by m incoming into another
pool, and vice versa.

– For each incoming (resp. outgoing) message edge labelled bym at pool level, there
exists only one corresponding incoming (resp. outgoing) message edge labelled by
m at the level of the process within the pool.
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– In a process, for each sequence edge labelled by e outgoing from a node, there
exists only one corresponding sequence edge labelled by e incoming into another
node, and vice versa.

Well-definedness could be easily checked through a standard (and trivial) static analy-
sis; more practically, the rationale is that each term of the language can be easily derived
from a BPMN model whose only constraint is to have (pool, task, edge) unique names.

Notably, in this work we do not consider specifications using the OR join gateway,
because formalising its semantics is a tricky task (see, e.g., [9]) that would make our
formalisation much more complicated and, hence, out of focus.

Running Example (2/3). The BPMN model presented in Section 2 is expressed in our
syntax as the following collaboration:

B
uy

er

Pbuyer

order invoice shipment payment

R
es

el
le

r

Preseller

order invoice shipment payment

where (an excerpt of) process Pbuyer is defined as follows:

e1 Analyze
Market

e1 e2

order

Place
Order

e2 e3 e3

e4

e5

. . .

and process Preseller is defined in a similar way. [\

4 Operational Semantics

We give the semantics of BPMN in terms of marked collaborations, i.e. collections of
pools equipped with a marking. A marking is a distribution of tokens over pool message
edges and process elements that indicate message arrivals and the process nodes that are
active or not in a given step of the execution. This resembles the notions of token and
marking in Petri Nets; this is not surprising as such formalism has strongly inspired the
workflow constructs of BPMN. Similarly to the token-passing semantics in [10,11], our
tokens move along the syntax constructs, acting as sort of program counters.

For the sake of presentation, the operational semantics of BPMN is defined over
an enriched syntax, w.r.t. the one given in Section 3, where pools’ message edges are
marked (i.e., labelled) by message tokens�, while processes’ edges, events and tasks
are marked by workflow tokens ‚. As a matter of notation, the presence of a number
of message (resp. workflow) tokens in the same place is represented by means of one
token of the form �n (resp. ‚n), where n P N0 is the token multiplicity. The initial
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marking of a collaboration assigns a single workflow token to the start events of the pro-
cess of each pool in the collaboration. Notably, in this work we only consider business
processes instantiated with single instances. In fact, dealing with multiple instances in
presence of message interactions would require to properly deliver each message to
its appropriate instance; this would add complexity to our formal treatment, which we
want to avoid in order to keep it as easy to understand as possible. On the other hand,
the use of tokens with multiplicity is necessary also with single instances, e.g. due to the
behaviour of the combined use of AND and XOR gateways as in the following piece of
BPMN model:

. . . . . .t1

t2

Formally, the operational semantics of marked collaborations is defined in the SOS
style by relying on the notion of Labeled Transition System (LTS). The labeled tran-
sition relation of the LTS defining the semantics of collaborations, at pool layer, is
induced by the inference rules in Figure 4. We write C

l- C 1 to mean that “collab-
oration C can perform a transition labeled by l and become C 1 in doing so”. Transition
labels are generated by the following production rule:

pLabelsq l ::“ o : α | o1 Ñ o2 : m

The meaning of labels is as follows: o : α denotes an action α peformed by the process
instance of organisation o, while o1 Ñ o2 : m denotes the exchange of a message m
from organisation o1 to o2. The definition of the above relation relies on an auxiliary
transition relation defining the semantics of process instances and induced by the infer-
ence rules in Figures 5, 6, and 7. We write P

α- P 1 to mean that “process P can
perform a transition labeled by α and become P 1 in doing so”. The labels used by this
auxiliary transition relation are generated by the following production rules:

pActionsq α ::“ τ | !m | ?m

pInternal actionsq τ ::“ enabled t | completed t | p´ẽ1,`ẽ2q
where notation ẽ indicates a set of edges. The meaning of labels is as follows: τ denotes
an action internal to the process, while !m and ?m denote send and receive actions, re-
spectively. The meaning of internal actions is as follows: enabled t and completed t de-
note the start and completion of the execution of task t, respectively; the pair p´ẽ1,`ẽ2q
denotes movement of workflow tokens in the process graph, in particular one token is
removed from each edge in ẽ1 and one is added to each edge in ẽ2 (whenever one of the
two sets of edges is empty, its field is omitted from the pair).

We now briefly comment the rules in Figure 4. The first three rules allow a single
pool, representing organisation o, to evolve according to the evolution of its enclosed
processP . In particular, ifP performs an internal action (rule Internal), a sending action
(rule Send) or a receiving action (rule Receive), the pool performs the corresponding ac-
tion at collaboration layer, i.e. the label is enriched with the name o of the organisation
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P
τ- P 1

o P

m1 mk

o:τ- o P 1

m1 mk

pInternalq

P
!m- P 1

o P

m1 mk

o:!m- o P 1

m1 mk

pSendq

P
?m- P 1 n ą 0

o P

m1 m �n mk

o:?m- o P 1

m1 m �n´1 mk

pReceiveq

C
o1:!m- C 1

C o2 P

m1 m �n mk

o1Ño2:m- C 1 o2 P

m1 m �n`1 mk

pDeliverq

C
o1:!m- C 1 @i P t1, . . . , ku mi ‰ m

C o2 P

m1 mk

o1:!m- C 1 o2 P

m1 mk

pSkipq

C1
l- C 11 l ‰ o :!m

C1 C2
l- C 11 C2

C2
l- C 12 l ‰ o :!m

C1 C2
l- C1 C 12

pInterleavingq

Note: for the sake of presentation, in the rules above message tokens�n are omitted from message edges
that are not involved in the considered transition; for example, in rule Receive the tokens of all message
edges except for the edge labelled by m are omitted.

Fig. 4. BPMN Operational Semantics: Collaboration Layer
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e `e- e pStartq

e

n1

n2
´e- e

n1´1
n2`1 n1 ą 0 pEndq

e1

e2

...
ei

...

eh

n1

n2

ni

nh

p´e1,`eiq- e1

e2

...
ei

...

eh

n1´1

n2

ni`1

nh

n1 ą 0
2 ď i ď h

pXorSplitq

e1

e2

...

eh

n1

n2

nh

p´e1,`te2,...,ehuq- e1

e2

...

eh

n1´1

n2`1

nh`1

n1 ą 0 pAndSplitq

e1

e2

...

eh

n1

n2

nh

p´e1,`ẽq- e1

e2

...

eh

n1´1

n12

n1h

n1 ą 0

@i P t2, . . . , hu
pn1i “ ni ^ ei R ẽq _
pn1i “ ni`1^ ei P ẽq

pOrSplitq

ei

e2

...
e1

...

eh

ni

n2

n1

nh

p´ei,`e1q- ei

e2

...
e1

...

eh

ni´1

n2

n1`1

nh

ni ą 0
2 ď i ď h

pXorJoinq

e1

e2

...

eh

n1

n2

nh

p´te2,...,ehu,`e1q- e1

e2

...

eh

n1`1

n2´1

nh´1

n2, . . . , nh ą 0 pAndJoinq

Fig. 5. BPMN Operational Semantics: Process Layer (Control Flow Constructs).
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m1 mk

t
e1 e2

n1 n2

´e1-

m1 mk

t
e1 e2

n1´1 n2

k ě 0
n1 ą 0

pEnable1 q

t
e1 e2

n1 n2

enabled t- t
e1 e2

n1 n2

pEnable2 q

m1 mk

t
e1 e2

n1 n2

enabled t-

m1 mk

t
e1 e2

n1 n2

k ą 0 pEnable3 q

m1 mi mi`1 mk

t
e1 e2

n1 n2

!mi-

m1 mi mi`1 mk

t
e1 e2

n1 n2

1 ď i ă k pSend1 q

m1 mk

t
e1 e2

n1 n2

!mk-

m1 mk

t
e1 e2

n1 n2

k ą 0 pSend2 q

m1 mi mi`1 mk

t
e1 e2

n1 n2

?mi-

m1 mi mi`1 mk

t
e1 e2

n1 n2

1 ď i ă k pReceive1 q

m1 mk

t
e1 e2

n1 n2

?mk-

m1 mk

t
e1 e2

n1 n2

k ą 0 pReceive2 q

m1 mk

t
e1 e2

n1 n2

completed t-

m1 mk

t
e1 e2

n1 n2

k ě 0 pComplete1 q

m1 mk

t
e1 e2

n1 n2

`e2-

m1 mk

t
e1 e2

n1 n2`1
k ě 0 pComplete2 q

Fig. 6. BPMN Operational Semantics: Process Layer (Task Constructs).
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P1
p´ẽ1,`ẽ2q- P 11

P1 P2
p´ẽ1,`ẽ2q- P 11 P2˘ẽ1,ẽ2

P2
p´ẽ1,`ẽ2q- P 12

P1 P2
p´ẽ1,`ẽ2q- P1 ˘ẽ1,ẽ2 P 12

P1
α- P 11 α ‰ p´ẽ1,`ẽ2q
P1 P2

α- P 11 P2

P2
α- P 12 α ‰ p´ẽ1,`ẽ2q
P1 P2

α- P1 P 12

Fig. 7. BPMN Operational Semantics: Process Layer (Node Collection).

performing the action. Notably, rule Receive can be applied only if there is at least one
(n ą 0) message m queued in the corresponding message edge of the pool; of course,
a message token is consumed by this transition. Instead, when an organisation o1 in-
dicates the willingness to send a message m (represented by a transition labelled by
o1 :!m), such message is properly delivered to the receiving organisation o2 by applying
rule Deliver. The resulting transition, labelled by o1 Ñ o2 : m, has the effect of increas-
ing in the pool of o2 the number of message tokens queued in the message edge labelled
by m. If organisation o2 does not have a message edge labelled by m, i.e. o2 is not sup-
posed to receive message m, no interaction between o1 and o2 takes place and label
o1 :!m is propagated (rule Skip). It is worth noticing that, as prescribed by the BPMN
2.0 specification, inter-organisation communication is asynchronous: the sending action
is not blocking, while the receiving one is blocking when there is no message token to
consume. The two Interleaving rules permit to interleave the execution of actions per-
formed by pools of the same collaboration, so that if a part of a larger collaboration
evolves, the whole collaboration evolves accordingly. Interleaving is disallowed in case
of a sending action, in order to force the use of rules Deliver and Skip for synchronising
the sending pool with the receiving one. In fact, labels of the form o1 :!m are never ex-
hibited by a well-defined collaboration (see Section 3), as they are just auxiliary labels
used for properly, and compositionally, inferring transitions labelled by o1 Ñ o2 : m.

Rules in Figure 5 deal with control flow constructs, i.e. events and gateways. All
these rules are axioms (i.e., they have no premises) producing transition labels of the
form p´ẽ1,`ẽ2q. This means that the effect of these rules is simply changing the mark-
ing of the process, i.e. moving workflow tokens among edges. For example, the effect
of the rule AndSplit is to consume a token from the incoming edge e1 of the AND gate-
way and to add a token to each outgoing edge ei, with 2 ď i ď h. The propagation of
marking updates to other nodes of the process is dealt with by the interleaving rules in
Figure 7 (see comments below).

Rules in Figure 6 are axioms devoted to the evolution of tasks. When a task is en-
abled (rule Enable1), a token from its incoming edge is consumed and is placed on
the left of the task name to indicate the starting status of the task. Notably, a task can
be activated only when no token is placed inside the task rectangle or on its message
edges; this means that parallel executions of the same task are not allowed. The fact that
a task t is enabled is notified by applying either rule Enable2 or Enable3, depending
on the presence of message edges. When a message edge is marked by a token, the
corresponding sending or receiving action is performed; moreover the token is moved
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to the next edge (rules Send1 or Receive1) or on the top of the task name (rules Send2
orReceive2). Notice that the order of message edges is relevant for the execution: mes-
sages are processed from left to the right. This permits disambiguating the semantics of
tasks in case of multiple message edges. Finally, when all messages are processed, the
completion of the task execution is notified (rule Complete1) and the number of tokens
on the outgoing edge is increased by one (rule Complete2).

The last group of rules, shown in Figure 7, deal with interleaving of process node
evolutions. The first two rules are applied when the evolution involves a change in
the marking of process edges, while the second two are applied in the other cases. In
particular, the former rules relies on the marking updating function P ˘ẽ1,ẽ2 , which
returns a process obtained from P by unmarking (resp. marking) edges in ẽ1 (resp. ẽ2).
Formally, this function is inductively defined on the structure of process P , by also
relying on the following auxiliary function:

n˘eẽ1,ẽ2 “
$
&
%
n´1 if e P ẽ1
n`1 if e P ẽ2
n otherwise

Notably, in the above definition we exploit the fact that, since self-loop are not admitted
in a process, it holds ẽ1 X ẽ2 “ H. In each base case of the inductive definition of the
marking updating function, we simply apply the auxiliary function to the multiplicity
of all tokens that mark an edge of the process node. We report below few significant
cases of the definition (the others are similar):

pP1 P2q˘ẽ1,ẽ2 “ P1 ˘ẽ1,ẽ2 P2˘ẽ1,ẽ2
e

n1
n2 ˘ẽ1,ẽ2 “ e

n1˘eẽ1,ẽ2
n2

e1

e2

...

eh

n1

n2

nh

˘ẽ1,ẽ2 “ e1

e2

...

eh

n1˘e1ẽ1,ẽ2

n2˘e2ẽ1,ẽ2

nh˘ehẽ1,ẽ2

Running Example (3/3). We describe here the semantics of the BPMN model informally
introduced in Section 2 and fomalised in Section 3. The initial state of the execution is
represented by the collaboration in Figure 8(a), where the start events of the processes of
the two organisations are marked by a workflow token each. Thus, the execution of both
processes can start and, as a possible evolution, after few computational steps the status
of the collaboration becomes the one shown in Figure 8(b). In such a configuration,
according to the position of the two tokens, the buyer is performing the Analize Mar-
ket task, while the reseller is already waiting for the order from the buyer. After other
few steps, the collaboration status becomes the one in Figure 8(c), where the buyer has
completed the Analize Market task and sent the order message to the reseller (as indi-
cated by the message token� queued in the corresponding incoming message edge of
the reseller’s pool). Now, the reseller can consume the message and resume its com-
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B
uy

er

order . . .

e1 e1 Analyze
Market

e2

e2 Place
Order

e3

order

. . .

R
es

el
le

r

order . . .

e10

e10 Receive
Order

e11

order

. . .

B
uy

er

order . . .

e1 e1 Analyze
Market

e2

e2 Place
Order

e3

order

. . .

R
es

el
le

r

order . . .

e10

e10 Receive
Order

e11

order

. . .

(a) Initial configuration (b) Reseller ready to receive the order

B
uy

er

order . . .

e1 e1 Analyze
Market

e2

e2 Place
Order

e3

order

. . .

R
es

el
le

r

order . . .

e10

e10 Receive
Order

e11

order

. . .

�

B
uy

er

order . . .

e1

e9

. . .
R

es
el

le
r

order . . .

e10

e18

. . .

(c) Order sent (not read yet by the reseller) (d) Collaboration terminated

Fig. 8. Semantics of the running example: an excerpt

putation. Finally, after further steps, the collaboration reaches the final configuration in
Figure 8(d), where two workflow tokens mark the final events of the two processes. [\

5 Related Work

Much effort has been devoted to the formalisation of BPMN. Here we refer to the
most relevant attempts: we first consider the other direct formalisations available in the
literature, then we discuss some mappings from BPMN to well-known formalisms.

With regard to direct formalisations, we refer to Van Gorp and Dijkman [12], Chris-
tiansen et. al [9], El-Saber and Boronat [13], and Borger and Thalheim [14]. Among
them, our contribution was mainly inspired by the one presented in [12]. They propose
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a BPMN 2.0 formalisation based on in-place graph transformation rules; these rules
are defined to be passed as input to the GrGen.NET tool, and are documented visually
using BPMN syntax. With respect to our work, the used formalisation techniques are
different, since we provide an operational semantics in terms of LTS. This allows us
to apply verification techniques based on transition labels, as e.g. model checking of
properties expressed as formulae of action-based temporal logic. This gives us the pos-
sibility to be tool interdependent rather than be constrained to tools specific for graph
transformation rules. Another interesting work is described in [9], where Christiansen
et. al. propose a direct formalisation of the BPMN 2.0 Beta 1 Specification using al-
gorithms based on incrementally updated data structures. The semantics is given for
BPMNinc, that is a minimal subset of BPMN 2.0 containing just inclusive and exclu-
sive gateways, start and end events, and sequence flows. This work differs from ours
with respect to the formalisation method, as it proposes a token-based semantics à la
Petri Nets, while we define an operational semantics with a compositional approach à
la process calculi. Moreover, the work in [9] also lacks to take into account BPMN or-
ganisational aspects and the flow of messages, whose treatment is a main contribution
of our work. El-Saber and Boronat proposed in [13] a formal characterisation of well-
formed BPMN processes in terms of rewriting logic, using Maude as supporting tool.
This formalisation refers to a subset of the BPMN specification considering elements
that are used regularly, such as flow nodes, data elements, connecting flow elements,
artefacts, and swimlanes. Interesting it is also the mechanism given to represent and
evaluate guard conditions in decision gateways. Differently from the other direct for-
malisations, this approach can be only applied to well-structured processes. Concerning
the well-structuredness requirement, we are aware that enforcing such restriction may
have benefits, among which we refer to the importance of structuredness as a guideline
to avoid errors in business process modelling [15]. But we are also aware that this re-
quirement may result in a language more complex to use and less expressive [16]. We
therefore consider the arbitrary topology as a benefit, because we assume that designers
should be free to model the process according to the reality they feel without needing to
define well-structured models. In addition, it should be considered that not all process
models with an arbitrary topology can be transformed into equivalent well-structured
processes [17,18]. Moreover, the work in [13] has another drawback, concerning BPMN
organisational aspects and messages flow. In particular, even if it is stated that messages
are included in the formalisation, their formal treatment is not explained in the paper.

The most common formalisations of BPMN are given via mappings to various
formalisms, such as Petri Nets [19,20,21,22,6,23], YAWL [24,25] and process calculi
[26,27,28,29,30,31,32]. This kind of formalisations suffers the typical problems intro-
duced by a mapping. In fact, in these cases the semantics of BPMN is not given in
terms of features and constructs of the language, but in terms of low-level details of
their encodings. This makes the verification of BPMN models less effective, because
the verification results refer to the low-level implementation of the models and may be
difficult to be interpreted at BPMN level. Moreover, no formal proof of the correctness
of these encodings with respect to a native semantics of BPMN is provided.

Regarding the mapping from BPMN to Petri Nets, the one proposed by Dijkman et.
al. in [6] is probably the most relevant contribution. It enables the use of standard tools
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for process analysis, such as soundness of BPMN models. However, differently from
our approach, even if the mapping deals with messages, it does not properly consider
multiple organisation scenarios, and does not provide information to the analysis phase
regarding who are the participants involved in the exchange of messages.

Other relevant mappings are those from BPMN to YAWL, a language with a strictly
defined execution semantics inspired by Petri Nets. Among the proposed mappings,
we would like to mention the ones by Ye and Song [24] and Dumas et. al. [25]. The
former is defined under the well-formedness assumption, which instead we do not rely
on. Moreover, although messages are taken into account in the mapping, pools and
lanes are not considered; thus it is not possible to identify who is the sender and who
is the receiver in the communication. This results in the lack of capability to introduce
verification at message level considering the involved organisations. The latter mapping,
instead, formalises a very small portion of BPMN elements. In particular, limitations
about pools and messages are similar to the previous approach: pools are treated as
separate business processes, while messages flow is not covered by the mapping.

Process calculi has been also considered as means for formalising BPMN. Among
the others, Wong and Gibbons presented in [27] a translation from a subset of BPMN
process diagrams, under the assumption of well-formedness, to a CSP-like language
based on Z notation. This enables the introduction of formal verification to check prop-
erties like consistency and compatibility. Even if messages have been omitted in the
formalisation presented in [27], their treatment is discussed in [26]. Messages are also
considered by Arbab et. al. in [28], where the main BPMN modeling primitives are rep-
resented by means of the coordination language Reo. Differently from the other map-
pings, this one considers a significantly larger set of BPMN elements. Prandi et. al.,
instead, defined in [29] a semantics in term of a mapping from BPMN to the process
calculus COWS, which has been specifically devised for modelling service-oriented
systems. Last but not least, also π-calculus was taken as target language of mapping by
Hutchison et. al. [30] and Puhlmann [31]. Even if our proposal differs from the above
ones, as it is a direct semantics rather than a mapping, it has drawn inspiration from
those based on process calculi for the use of a compositional approach in the SOS style.

6 Concluding Remarks

The lack of a shared, well-established, comprehensive formal semantics for BPMN was
the main driver of our work. This is also a critical point of the specification considering
the wide adoption of the language both from the industry and research community. In
this paper, we present an operational semantics in terms of LTS. We focus on the col-
laboration capability supported by message exchange. The proposed semantics enables
designers to freely specify their processes with an arbitrary topology supporting the
adherence to the standard, without the requirement of defining well-structured models.

The proposed formalisation allows one to verify properties on the model using con-
solidated formal reasoning techniques based on LTS. For instance, by expressing such
properties by means of temporal logic, we can check, e.g., if after the enabling of a
given task it can be eventually completed or not. More in general, we can verify, e.g., if
for all possible executions all processes involved in a collaboration successfully termi-
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nates. This is quite relevant also with reference to the message exchange as, although
communication is asynchronous, message receiving is blocking. We intend to investi-
gate verification of such kind of properties in the near future. We plan to achieve this
by implementing our semantics in Maude3 that allows to render operational rules of the
semantics in terms of rewriting rules. This enables the (automatic or interactive) explo-
ration of the evolutions of BPMN models, and it permits to exploit the rich analysis tool
set provided by Maude. Even if we consider the use of Maude the most promising ap-
proach for our purposes, we plan to also investigate other approaches, such as [33,34].
Moreover, we intend to develop a tool chain integrating the verification environment
with a BPMN modelling environment, such as Eclipse BPMN Modeller4. This will of-
fer the possibility of going back and forth between the modelling environment and the
verification one, by e.g. graphically visualising on the BPMN model the feedbacks of
the verification.

We also aim at extending our formalisation to model more BPMN elements, such
as data objects, sub-processing, and error handling. In particular, we intend to focus on
tricky issues concerning multiple instances of the same process and OR join gateway.

Last but not least, we plan to prove some consistency properties of our operational
semantics ensuring, e.g., that some syntactic constraints are preserved along the evolu-
tion of marked collaborations.
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Abstract. The actor model is a concurrent object-based computational
model in which event-driven and asynchronously communicating actors
are units of concurrency. Actors are widely used in modeling real-time
and distributed systems. Floating-Time Transition System (FTTS) is pro-
posed as an alternative semantics for timed actors, and schedulability and
deadlock-freedom analysis techniques have been developed for it. The
absence of shared variables and blocking send or receive, and the pres-
ence of single-threaded actors along with non-preemptive execution of
each message server, ensure that the execution of message servers do not
interfere with each other. The Floating-Time Transition System semantics
exploits this by executing message servers in isolation, and by relaxing the
synchronization of progress of time among actors, and thereby has fewer
states in the transition system. Considering an actor-based language, we
prove a weak bisimulation relation between FTTS and Timed Transition
System, which is generally the standard semantic framework for discrete-
time systems. Thus, the FTTS semantics preserves event-based branching-
time properties. Our experimental results show a significant reduction in
the state space for most of the examples we have studied.

Keywords: Actor model, Timed Rebeca, Verification, State Space Reduc-
tion, Floating Time Transition System, Timed Transition System

1 Introduction

The semantics of real-time systems is often defined assuming an ambient global
time that proceeds uniformly for all participants in a distributed system. Even
when individual local clocks are assumed to have skews, these skews are mod-
elled relative to this ambient global time. For systems where the time domain is
taken to be discrete (i.e., the set of natural numbers), this results in the seman-
tics being described using a Timed Transition System (TTS). In a timed transition
system, transitions are partitioned into two classes: instantaneous transitions
(in which time does not progress), and time ticks when the global clock is incre-
mented. These time ticks happen when all participants “agree” for time elapse.
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Such TTS-based semantics is standard and has been defined for a variety of for-
malisms [17, 5, 9, 13]. Note that, using TTS is not limited to discrete-time systems.
It also has been used to give semantics for timed languages and formalisms that
assume continuous or dense time domains.

The timed transition system semantics, unfortunately, suffers from the usual
state space explosion problem (in addition to being infinite in many cases). The
transition system contains arbitrary interleavings of independent actions of the
various components of a distributed system, resulting in a large state space. In
the presence of a global clock and timing information this may become even
more acute.

A very different semantics, called Floating Time Transition System (FTTS),
was proposed in [16] for a timed actor-based language called Timed Rebeca [23].
Timed Rebeca has been used in a number of applications. Examples of such case
studies include analysis of routing algorithms and scheduling policies in NoC
(Network on Chip) designs [26, 25]; schedulability analysis of distributed real-
time sensor network applications [20], more specifically a real-time continuous
sensing application for structural health monitoring in [18]; evaluation of differ-
ent dispatching policies in clouds with priorities and deadlines in Mapreduce
clusters, based on the work in [11].

Floating Time Transition Systems (FTTS) define a semantics where actors in
a distributed system proceed at their own rates with local clocks widely apart,
instead of moving in a lock step fashion with the global time as in TTS. Recall
that in the Actor model [3] of computation, actors encapsulate the concept of
concurrent behavior. Each actor provides services that can be requested by other
actors by sending messages to the provider. Messages are put in the message
buffer of the receiver; the receiver takes the message and executes the requested
service, possibly sending messages to some other actors. In FTTS semantics,
each transition is the complete execution of a message server of an actor (which
contains both timed and untimed statements), without any interleaving with
the steps of other actors. Since actors execute a message to completion in this
semantics, actors may have different local times in states of FTTS, as their
local times are increased by timed statements of message servers. Relaxing the
synchronization of progress of time among actors in FTTS can significantly
reduce the size of the state space as it avoids many of the interleavings present
in the TTS semantics.

The main contribution of this paper is the establishment of the bisimularity
of the TTS and FTTS semantics for Timed Rebeca. Moreover, since the starting
time of the execution of actions is also preserved, we can prove the preservation
of any timed property of actions that is bisimulation invariant. Examples of
such properties include µ-calculus with weak modalities. Such a logic preser-
vation result is stronger than previous results about this and other reduction
techniques, which only establish the preservation of “reachability”-type prop-
erties. In [16], we showed that FTTS preserves assertion-based properties like
schedulability and deadlock avoidance. Similarly, many other works on re-
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duction techniques for asynchronous systems papers like [8, 12, 19] consider
assertion-based properties.

For timed systems, the norm is to show that there is a timed weak bisimula-
tion relation between two timed transition systems to prove that they preserve
the same set of timed branching-time properties (e.g. TCTL). Proving the exis-
tence of such a relation is impossible when one of the transition systems does
not have progress-of-time transitions which is the case of relation between TTS
and FTTS. In this paper, we proved that the actions and the execution time of
the actions are preserved in FTTS using an innovative approach for defining
relation between the states of a TTS and its corresponding FTTS.

Our bisimulation proof relies on observing that the FTTS semantics exploits
key features of the actor model of computation. In such a model there is no
shared memory, and sends and receives are non-blocking. Moreover, actors
are single-threaded, with message servers being executed non-preemptively.
This means that message servers can be executed in an isolated fashion, as is
carried out in FTTS, without compromising the semantics of the model. Since
our correctness proof of FTTS relies only on certain features of the actor model
(rather than something specific to timed Rebeca), it suggests that FTTSs can be
used in the analysis of other actor models and languages, and more generally,
in other asynchronous event-based models.

We present experimental results that demonstrate the savings obtained from
using FTTS. We have developed a toolset for generating the state space of a
given Timed Rebeca model based on both the TTS and FTTS semantics that
is accessible through the Rebeca homepage [1]. We show that using the FTTS
semantics results in a smaller state space, fewer transitions, and less model
checking time when compared with the TTS semantics (Section 4). In some case
studies, using FTTS results in a state space which is 10 times smaller than its
observational equivalent state space in TTS semantics.

2 Background

2.1 Timed Rebeca

Timed Rebeca is an extension of Rebeca [27] with time-related features for
modeling and verification of time-critical systems. We describe Timed Rebeca
language constructs using a simple ticket service example (see Figure 1). The
abstract syntax of the language is given in Appendix A.

Each Timed Rebeca model consists of a number of reactive classes, each de-
scribing the type of a certain number of actors (called rebecs in Timed Rebeca). In
this example (Figure 1), we have three reactive classes TicketService, Agent,
and Customer. Each reactive class declares a set of state variables which define
the local state of the rebecs of that class (like issueDelay of TicketService
which defines the time needed to issue a ticket). Following the actor model,
the communication in the model takes place by rebecs sending asynchronous
messages to each other. Each rebec has a set of known rebecs to which it can send
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messages. For example, a rebec of type TicketService knows a rebec of type
Agent (line 2), to which it can send messages (line 12). Reactive classes declare
the messages to which they can respond. The way a rebec responds to a message
is specified in a message server. A rebec can change its state variables through
assignment statements (line 13), make decisions through conditional statements
(not appearing in our example), and communicate with other rebecs by sending
messages (line 12). Iterative behavior is modeled by rebecs sending messages to
themselves (line 38). Since the communication is asynchronous, each rebec has
a message bag from which it takes the next incoming message. A rebec takes the
first message from its bag, executes the corresponding message server atomi-
cally, and then takes the next message (or waits for the next message to arrive)
and so on.

1 reactiveclass TicketService {
2 knownrebecs {Agent a;}

3 statevars {

4 int issueDelay, nextId;

5 }

6 msgsrv initial(int myDelay) {

7 issueDelay = myDelay;

8 nextId = 0;

9 }

10 msgsrv requestTicket() {

11 delay(issueDelay);

12 a.ticketIssued(nextId);

13 nextId = nextId + 1;

14 }

15 }
16 reactiveclass Agent {
17 knownrebecs {

18 TicketService ts;

19 Customer c;

20 }

21 msgsrv requestTicket() {

22 ts.requestTicket()

23 deadline(5);

24 }

25 msgsrv ticketIssued(int id) {

26 c.ticketIssued(id);

27 }

28 }
29 reactiveclass Customer {
30 knownrebecs {Agent a;}

31 msgsrv initial() {

32 self.try();

33 }

34 msgsrv try() {

35 a.requestTicket();

36 }

37 msgsrv ticketIssued(int id) {

38 self.try() after(30);

39 }

40 }
41
42 main {
43 Agent a(ts, c):();

44 TicketService ts(a):(3);

45 Customer c(a):();

46 }

Fig. 1. The Timed Rebeca model of ticket service system.

Timed Rebeca allows nondeterministic assignment to model nondetermin-
istic behavior of message servers. In this paper we consider the fragment of
language without such nondeterministic assignment. Thus, message servers in
this paper specify deterministic behavior. Note, however, that even the Timed
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Rebeca language considered in this paper exhibits nondeterminism that results
from the interleaving of the executions of different rebecs due to concurrency;
more details follow in the section defining the semantics.

Finally, the main block is used to instantiate the rebecs in the system. In our
example (lines 43-45), three rebecs are created receiving their known rebecs and
the arguments to their initalmessage servers upon instantiation.

In a Timed Rebeca model, although there is a notion of global time, each
rebec has its own local clock. The local clocks can be considered as synchronized
distributed clocks. Though methods (message servers) are executed atomically,
passing of time while executing a method can still be modeled. In addition,
instead of a queue for messages, there is a bag of messages for each rebec,
ordering its messages based on their arrival time.

Timed Rebeca adds three primitives to Rebeca to address timing issues:
delay, deadline and after. A delay statement models the passing of time for a rebec
during execution of a message server (line 11). Note that all other statements
are assumed to execute instantaneously. The keywords after and deadline can
be used in conjunction with a method call. The term after n indicates that it
takes n units of time (based on the local time of the sender) for the message to
be delivered to its receiver. For example, the periodic task of requesting a new
ticket is modeled in line 38 by the customer sending a trymessage to itself and
letting the receiver (itself) take it from its bag only after 30 units of time. The
term deadline n shows that if the message is not taken in n units of time, it will
be purged from the receiver’s bag automatically. For example, line 23 indicates
that a requestTicket message to the ticket service must be started to execute
before five units from sending the message. Note that, the deadline is counted
from the time of the sending of the message.

2.2 Semantics of Timed Rebeca

Prior to the detailed definition of semantics of Timed Rebeca, we formalize the
definition of a rebec and a model in Timed Rebeca. A rebec ri with the unique
identifier i is defined as the tuple (Vi,Mi,Ki) where Vi is the set of its state
variables, Mi is the set of its message servers, and Ki is the set of its known
rebecs. The set of all the values of the state variables of ri is denoted by Valsi. For
a Timed Rebeca modelM, there is a universal set I which contains identifiers
of all the rebecs ofM.

A (timed) message is defined as tmsg = ((sid, rid,mid), ar, dl), where rebec rsid
sends the message mmid ∈ Mrid to rebec rrid. This message is delivered to the
rebec rrid at ar ∈ N0 as its arrival time and the message should be served before
dl ∈ N0 as its deadline. For the sake of simplicity, we assume parametrized
messages as different messages (i.e. the value of parameters are in the name of
the message) without loss of generality.Each rebec ri has a message bag Bi which
can be defined as a multiset of timed messages. Bi stores the timed messages
which are sent to ri. The set of possible states of Bi is denoted by Bagsi.

In the following sections, two different semantics for Timed Rebeca models
are defined, called timed transition system and floating time transition system. FTTS
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is defined in [16] as the natural semantics of Timed Rebeca but the relation be-
tween TTS and FTTS for Timed Rebeca has not been investigated before. Timed
transition system is generally the standard semantic framework for timed sys-
tems, and we define the formal semantics of Timed Rebeca in TTS in Section 2.3.
Floating time transition system exploits key features of actor models to generate
smaller transition systems compared to TTS. The absence of shared variables,
and blocking send or receive, and the presence of single threaded actors along
with non-preemptive execution of each message server, ensures that the ex-
ecution of a message server does not interfere with the execution of another
message server of a different rebec. The floating time transition system seman-
tics exploits this by executing message servers in isolation, and thereby having
fewer states in the transition system.

2.3 Semantics of Timed Rebeca in Timed Transition System

Timed Transition System of the Timed Rebeca model M is a tuple of TTS =
(S, s0,Act,→) where S is the set of states, s0 is the initial state, Act is the set of
actions, and→ is the transition relation.

States. A state s ∈ S consists of the local states of the rebecs, together with the
current time of the state. The local state of rebec ri in state s is defined as the
tuple (Vs,i,Bs,i, pcs,i, ress,i), where

– Vs,i ∈ Valsi is the values of the state variables of ri
– Bs,i ∈ Bagsi is the message bag of ri
– pcs,i ∈ {null} ∪ (Mi ×N) is the program counter, tracking the execution of the

current message server (null if ri is idle in s)
– ress,i ∈N0 is the resuming time, if ri is executing a delay in s

So, state s ∈ S can be defined as
(∏

i∈I
(
Vs,i,Bs,i, pcs,i, ress,i

)
,nows

)
where nows ∈N

is the current time of s.

Initial State. s0 is the initial state of the Timed Rebeca modelMwhere the state
variables of the rebecs are set to their initial values (according to their types),
the initialmessage is put in the bag of all rebecs having such a message server
(their arrival times are set to zero), the program counters of all rebecs are set to
null, and the resuming time of all rebecs and the time of the state are set to zero.

Actions. There are three possible types of actions: sending a message tmsg (as
defined in Section 2.2 there is tmsg = ((sid, rid,mid), ar, dl) ), executing a statement
by an actor (which we consider as an internal transition τ), and progress of n ∈N
units of time. Hence, the set of actions is Act =

⋃
i∈I ((I × i ×Mi) ×N ×N) ∪

{τ} ∪N.

Transition Relations. Before defining the transition relation, we introduce the
notation Es,i which denotes the set of enabled messages of rebec ri in state s which
contains the messages whose arrival time is less than or equal to nows. The
transition relation→⊂ S × Act × S is defined such that (s, act, t) ∈→ if and only
if one of the following conditions holds.
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1. (Taking a message for execution) In state s, there exists ri such that pcs,i =
null and there exists tmsg ∈ Es,i. Here, we have a transition of the form

s
tmsg−→ t. This transition results in extracting tmsg from the message bag of

ri, setting pct,i to the first statement of the message server corresponding to
tmsg, and setting rest,i to nowt (which is the same as nows). Note that Vt,i
remains the same as Vs,i. These transitions are called taking-event transitions
and ri is called enabled rebec.

2. (Internal action) In state s, there exist ri such that pcs,i , null and ress,i = nows
(the value of ress,i does not change during the execution of a message,
except for running a delay statement). The statement of message server of
ri specified by pcs,i is executed and one of the following cases occurs based
on the type of the statement. Here, we have a transition of the form s τ→ t.
(a) Non-delay statement: the execution of such a statement may change

the value of a state variable of rebec ri or send a message to another
rebec. Here, pct,i is set to the next statement (or null if there is no more
statements). In this case now(t) and now(s) are the same.

(b) Delay statement with parameter d ∈ N: the execution of a delay state-
ment sets rest,i to nows + d. All other elements of the state remain un-
changed. Particularly, pct,i = pcs,i because the execution of delay state-
ment is not yet complete. The value of the program counter will be set
to the next statement after completing the execution of delay (as will be
shown in the third case).

These transitions are called internal transitions.
3. (Progress of time) If in state s none of the conditions in cases 1 and 2 hold,

meaning that @ri · ((pcs,i = null ∧ Es,i , ∅) ∨ (pcs,i , null ∧ ress,i = nows)), the
only possible transition is progress of time. In this case, nowt is set to nows +d
where d ∈N is the minimum value which makes one of the aforementioned
conditions become true. The transition is of the form s d→ t. For any rebec
ri, if pcs,i , null and ress,i = nowt (the current value of pcs,i points to a delay
statement), pct,i is set to the next statement (or to null if there are no more
statements). These transitions are called time transitions. Note that when
such a transition exists, there is no other outgoing transition from s.

Later, for each state of a TTS we need to find messages which are sent by a
given rebec. Therefore, we define the following function which returns a bag of
messages which are sent by a rebec.

Definition 1 (Sent Messages in TTS). For a given state s ∈ S and rebec ri, function
sent(s, ri) returns bag of messages which are sent by ri in state s. In other words,
tmsg ∈ sent(s, ri) if and only if for message tmsg = ((sid, rid,mid), ar, dl) there is
∃ r j · tmsg ∈ Bs, j ∧ sid = ri. ut

2.4 Semantics of Timed Rebeca in Floating Timed Transition System

The notion of floating time transition system (FTTS) as a semantics for Timed
Rebeca has been introduced in [16]. States in floating time transition system
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contain the local times of each rebec, in addition to values of their state variables
and the bag of their received messages. However, the local times of rebecs in a
state can be different, and there is no unique value for time in each state. Such a
semantics is reasonable when one is only interested in the order of visible events.
FTTS may not be appropriate for analyses that require reasoning about all
synchronized global states of a Timed Rebeca model. The key features of Rebeca
actors that make FTTS a reasonable semantics are having no shared variables, no
blocking send or receive, single-threaded actors, and atomic (non-preemptive)
execution of each message server which give us an isolated message server
execution. This means that the execution of a message server of a rebec will
not interfere with execution of a message server of another rebec. Therefore, we
can execute all the statements of a given message server (even delay statements)
during a single transition. This makes the transition system significantly smaller,
because there will be only one kind of action, which is taking a message and
executing the corresponding message server entirely.

The operational semantics of a Timed Rebeca model M is defined as a
floating time transition system FTTS = (S′, s′0,Act′ , ↪→) and is as described
below. In this paper, we use the primed version for letters and notations related
to FTTS except for transitions which are shown by ↪→ (for TTS we use the
unprimed letters).

States. Similar to TTS, a state s ∈ S′ consists of the local states of the rebecs.
However, the current time is kept separately for each rebec, denoted by nows′,i.
We will see shortly, the message servers are executed entirely in one transition;
therefore, there is no need to keep track of the program counter and the resuming
time. So, the state s′ ∈ S′ is defined as s′ =

∏
i∈I

(
Vs′,i,Bs′,i,nows′,i

)
.

Initial State. s′0 is the initial state of the Timed Rebeca modelMwhere the state
variables of the rebecs are set to their initial values (according to their types),
the initial message is put in the bag of rebecs (their arrival times are set to
zero), and the current times of all the rebecs are set to zero.

Actions. As mentioned before, there is only one kind of action, which is taking
a message and executing the corresponding message server entirely. Therefore,
Act′ =

⋃
i∈I ((I × {i} ×Mi) ×N ×N) is defined as the set of all the possible timed

messages.

Transition Relations. We first define the notion of release time of a message. A
rebec ri in a state s′ ∈ S′ has a number of timed messages in its bag. The release
time of tmsg = ((sid, rid,mid), ar, dl) ∈ Bs′,i is defined as rttmsg = max(nows′,i, ar)
(Note that ar < nows′,i means that tmsg has arrived at some time when ri has been
busy executing another message server. Hence, tmsg is ready to be processed
at nows′,i). Consequently, the set of enabled messages of rebec ri in state s′ is
Es′,i = {tmsg ∈ Bs′,i|∀tmsg′ ∈ Bs′,i · rttmsg ≤ rttmsg′ }which are the messages with the
smallest release time. For a set of enabled messages Es′,i, enabling time ETs′,i is
defined as the release time of members of Es′,i.

Now we define the transition relation ↪→⊂ S′ × Act′ × S′ such that for every
pair of states s′, t′ ∈ S′, we have (s′, tmsg, t′) ∈↪→ for every tmsg ∈ Es′,i ∧ (∀ j ∈
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I · ETs′,i ≤ ETs′, j). All the transitions of FTTS are called taking-event transitions
and as a result of a taking-event transition labeled with tmsg, tmsg is extracted
from the bag of ri, the local time of ri is set to ETs′,i, and all the statements in
the message server corresponding to tmsg are executed sequentially. Here, ri is
called enabled rebec. The effect of executing non-delay statements is changing the
state variables of ri and sending some messages to si or other rebecs. The effect
of executing a delay statement with parameter d ∈N is increasing the local time
of ri by d units of time.

We define bag of sent messages in FTTS the same as what we defined in TTS.

Definition 2 (Sent Messages in FTTS). For a given state s′ ∈ S′ and rebec ri,
function sent(s′, ri) returns bag of messages which are sent by ri in state s′. In the other
words, tmsg ∈ sent(s′, ri) if and only if for message tmsg = ((sid, rid,mid), ar, dl) there
is ∃ r j · tmsg ∈ Bs′, j ∧ sid = ri. ut

There is no explicit reset operator for the time in Timed Rebeca, so, progress
of time results in an infinite number of states in the transition systems of both
FTTS and TTS. However, Timed Rebeca models are models of reactive systems
which generally show periodic or recurrent behaviors. Hence, if we ignore
the absolute time of the states, usually finite number of untimed traces are
generated for Timed Rebeca models. Based on this fact, in [16] we presented a
new notion for equivalence relation between two states to make the transition
systems finite, called shift equivalence relation. In shift equivalence relation two
states are equivalent if and only if they are the same except for the value of
parts which are related to the time (value of now, arrival times of messages,
and deadlines of messages) and shifting the value of parts which are related to
the time in one state makes it the same as the other one. This way, instead of
preserving absolute value of time, only the relative difference of timing parts
of states are preserved. As discussed in [16], shift equivalence relation makes
transition systems of the majority of Timed Rebeca models finite.

3 An Action-Based Weak Bisimulation Between TTS and
FTTS

As described in Section 2.4, in FTTS representation of a Timed Rebeca model,
all the statements of a message server are executed at once during a single
transition. In contrast, the TTS semantics executes one statement at a time, and
interleaves the execution of different message servers. We demonstrate despite
these differences, these semantics are equivalent in some sense. To this end, we
define an action-based weak bisimulation (observational equivalence) relation
between TTS = (S, s0,Act,→) and FTTS = (S′, s′0,Act′, ↪→) for a given Timed
Rebeca modelM. Note that in the following text we denote the states of FTTS
as the primed version of the states in TTS.

This definition is valid for Zeno-free Timed Rebeca models. As the model of
time in Timed Rebeca is discrete, the execution of infinite number of message
servers in zero time is the only scenario resulting Zeno behavior. In other words,
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execution of infinite number of message servers which make progress in time
goes to the infinity, as the smallest time elapse in Timed Rebeca is one unit.
Therefore, the Zeno behavior happens if and only if there is a cycle of message
servers invocations among different actors without progress of time. This can
be detected by performing a depth-first-search (DFS) in both TTS and FTTS [15].

Prior to the formal definition of the relation between the states of FTTS and
TTS the following definitions and proposition are required to make the relation
easy to understand.

We begin by defining the observable and τ actions in both transitions sys-
tems. All actions in FTTS are observable. In the TTS, only taking-event transitions
are observable. Therefore, time transitions and internal transitions in TTS are
assumed to be τ transitions. In other words, only taking-event actions are ob-
servable in TTS and FTTS. This definition conforms the definition of events and
observer primitives in the actor model which is introduced by Agha et. al. in [2]
as a reference actor framework. Next, we define the notion of a completing trace
for a rebec ri in TTS state s as an execution which results in completing the
execution of the message server of ri that has already commenced in state s.
Note that during a completing trace for ri the other rebecs, may complete their
servers (or not), and may start the execution of new message servers. We begin
by first defining an execution.

Definition 3 (Execution Trace). Execution trace from state s in TTS is a sequence of
transitions from state s to one of its reachable states u, shown by s

act1→ s1
act2→ · · · actn→ u. ut

Definition 4 (Completing Trace for a Rebec). A given execution trace from state
s to state u in TTS is a completing trace for rebec ri if and only if ri does not execute
any taking-event transition from s to u, pcu,i = null, and there is no other state in the
trace where the program counter of ri is null. Here, we also define CTs,i as one of the
completing traces from s for rebec ri (no matter which one in the case there are more
than one completing traces from s for rebec ri). In case of pcs,i = null, there is CTs,i = ε
as no more action is needed for completing the execution of a message server of ri in s. ut

Note that, as there is no preemption in the message server execution and there
is no infinite message server body in Timed Rebeca, there is a completing trace
for all the rebecs from all the states.

We define three functions on the completing traces. The first one returns the
value of the state variables of the specific rebec at the last state of the trace (the
rebec that the completing trace is defined for). The second one returns the time
of the last state of the trace. The third one returns the bag of messages that are
sent by the specific rebec during this trace.

Definition 5 (Three Functions on completing traces). Function statei(CTs,i)
returns the values of state variables of ri in the target state of trace CTs,i. Function
nowi(CTs,i) returns the time of the target state of trace CTs,i. Function senti(CTs,i)
returns a bag of messages where tmsg = ((sid, rid,mid), ar, dl) ∈ senti(CTs,i) if and only
if tmsg is sent during the execution of completing trace CTs,i and sid = ri. ut
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Based on the isolated execution of rebecs (no shared variables and no pre-
emption of a message server) we can easily conclude that in case of more than
one completing trace for a rebec, any of the completing traces ends in the same
values for state variables, the same state time, and the same bag of sent messages.

Proposition 1 (Completing Traces end in the same final condition). Assume
that there are two different completing traces CT1

s,i and CT2
s,i from a given state s ∈

S and rebec ri. We have senti(CT1
s,i) = senti(CT2

s,i), nowi(CT1
s,i) = nowi(CT2

s,i), and
statei(CT1

s,i) = statei(CT2
s,i).

Proof. It is presented in Appendix B. This proposition is valid when there is no
nondeterminism in the body of message servers. At the beginning of this section
we made clear that in this work we address Timed Rebeca models which do not
have nondeterministic assignments.

Next, we define a projection function for states of TTS and FTTS. Projection
functions extract values of state variables and the collection of messages which
are sent by one rebec from a given TTS or FTTS state. Using these projection
functions, we get uniform views from states of TTS and FTTS which are nec-
essary for the definition of the action-based weak bisimulation relation. To this
aim, as the execution of a message in TTS is completed in several steps, the
projection function in TTS is defined based on completing traces to be able to
have access to the valuation of state variables and bags of sent messages after
completing the execution of currently executing messages.

Definition 6 (Projection Function in TTS). For a given TTS state s ∈ S and rebec
ri, projection function Proj(s, i) returns a collection of statei(CTs,i), nowi(CTs,i), and
sent(s, i) ∪ senti(CTs,i).Here, CTs,i is one of completing traces of rebec ri in state s. ut
Definition 7 (Projection Function in FTTS). For a given FTTS state s′ ∈ S′ and
rebec ri, projection function Proj(s′, i) returns a collection of the values of state variables
of ri in s′, now(s′, i), and sent(s′, i). ut

Using the above definitions, we define the action-based weak bisimulation
relation among states of TTS and FTTS. Two states in TTS and FTTS are in the
relation if and only if the projection of states to each rebec is the same. This
way, we will prove that two states have the same future behavior in Theorem 1.
Figure 2 shows how states in TTS are mapped to their corresponding states
in FTTS. As the observational behavior of s1 and s′1 are the same (only the
observable action a is enabled), s1 is mapped to s′1 and as the observational
behavior of s2, s3, and s4 are the same as the observational behavior of s′2 (the
observable actions b and c are enabled), they are mapped to s′2.

Definition 8 (Relation among states of TTS and FTTS). Two states s ∈ S and
s′ ∈ S′ are in relation R ⊆ S × S′ if and only if Proj(s, i) = Proj(s′, i) holds for every
rebec ri. ut

Directly from the definition of relation R it is concluded that the bag of
enabled taking-event messages in s and s′ are the same.
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Fig. 2. How states in TTS are mapped to states of FTTS with the same future behaviors.

Proposition 2 (Relation R preserves enabled messages). Two states s ∈ S and
s′ ∈ S′ which are in relation R and Es,i , ∅, have the same bag of enabled messages and
the enabled messages have the same enabling time.

Proof. It is presented in Appendix C.

Having the same enabled messages (messages with the same signature and
the same execution time) in two given states s ∈ S and s′ ∈ S′ where s R s′, we
are able to prove that s and s′ have the same future behavior. To this aim, we
have to prove that R is an action-based weak bisimulation relation.

Definition 9 (Action-based weak bisimulation relation). A relation P over two
transition systems TS1 = (S1, s10 ,Act1,→1) and TS2 = (S2, s20 ,Act2,→2) where TS2
is τ-free transition system, is an action-based weak bisimulation relation if the following
conditions hold for states of TS1 and TS2.

1. ∀s1, t1 ∈ S1 and s2 ∈ S2 where s1 P s2, in case of s1
α→1 t1 where α ∈ Act1 then

∃ t2 ∈ S2 such that s2
α→2 t2 and t1 P t2 and in case of s1

τ→1 t1 there is t1 P s2.
2. ∀s2, t2 ∈ S2 and s1 ∈ S1 where s1 P s2, for a message α ∈ Act2 such that s2

α→2 t2

then ∃ s′, s′′, . . . , s(k), t1 ∈ S1 (for k ≥ 0) such that s1
τ→1 s′ τ→1 s′′ τ→1 · · · α→1 t1

and t1 P t2.

ut
Theorem 1. The relation R is an action-based weak bisimulation relation between
states of TTS and FTTS.

Proof. It is presented in Appendix D.

We discussed in Section 2.4 that in actor systems we are interested in relation
among actions of systems and the time where they are triggered (messages are
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taken from bags). So, we have to find the most expressive action-based logic
which is preserved in action-based weak bisimulation relation. As mentioned
in [28], weak bisimulation relation preserves properties in form of modal µ-
calculus with weak modalities. Weak-bisimulation relation does not preserve
complete modal µ-calculus. Weak modal µ-calculus has the same syntax as
modal µ-calculus, where we assume that the diamond (〈a〉ϕ) and box ([a]ϕ)
modalities are restricted to observable transitions, i.e., action a must be a taking-
event transition. The semantics of this logic is identical to that of µ-calculus,
except for the semantics of the diamond and box operators — a state s satisfies
〈a〉ϕ if there is an execution starting from state s to t, such that a is the only
visible action, and t satisfies (inductively) ϕ. The semantics of box is defined
dually.

Corollary 1. Transition systems of Timed Rebeca models in TTS and FTTS are equiv-
alent with respect to all formulas that can be expressed in modal µ-calculus with weak
modalities where the actions are taking messages from bags. ut

4 Experimental Results

We developed a toolset for the model checking of Timed Rebeca models based on
the semantics of both FTTS and TTS, as a part of the Afra project 4. The current
version of the model checking toolset supports schedulability and deadlock-
freedom analysis and assertion based verification of Timed Rebeca models.
The Timed Rebeca code of the case studies and the model checking toolset are
accessible from Rebeca homepage [1]. We provide four case studies of different
sizes to illustrate the reduction in state space size, number of transitions, and
time consumption of model checking using FTTS in comparison with TTS. The
host computer of model checking toolset was a desktop computer with 1 CPU (2
cores) and 6GB of RAM storage, running Microsoft Windows 7 as the operating
system. The selected case studies are the models of a Wireless Sensor and Actuator
Networks (WSAN), the simplified version of Scheduler of Hadoop, a Ticket Service
system, and simplified version of 802.11 Wireless Protocol.

The details of the Ticket Service case study is explained in Section 2.1. Catching
the deadline of issuing the ticket is the main property of this model. We cre-
ated different sizes of ticket service model by varying the number of customers,
which results in four to ten rebecs in the model. In the case of the simplified
version of 802.11 Wireless Protocol, we modeled three wireless nodes which are
communicating via a medium. The medium sets random back-off time when
more than one node starts to send data, to resolve data collision in the medium.
Deadlock avoidance is the main property of this model. In the third case study,
a WSAN is modeled as a collection of actors for sensing, radio communica-
tion, data processing, and actuation. Schedulability of the model is verified as
the main property of this model. Finally, we modeled a simplified version of

4 The latest version of the toolset (version 2.5.0) is accessible from http://www.

rebeca-lang.org/wiki/pmwiki.php/Tools/RMC
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the behavior of MapReduce of Hadoop system, called YARN. We modeled one
client which submits jobs to YARN resource manager. The resource manager
distributes the submitted job among application masters and application mas-
ters split the job into some tasks and distribute tasks among some nodes. This
model has 32 rebecs and is model checked to meet deadline of jobs.

Problem Size Using FTTS Using TTS Reduction
states trans time states trans time states trans

Yarn - 1.30K 5.71K < 1 sec 11.03K 61.08K 6 secs 88% 91%

WSAN

33,6,4,2 977 1.5K < 1 sec 1.92K 2.52K < 1 sec 49% 41%
25,5,4,10 1.85K 2.54K < 1 sec 3.72K 4.55K < 1 sec 50% 44%
30,6,4,2 4.75K 5.78K < 1 sec 9.35K 10.46K 2 secs 50% 45%
25,6,4,2 17.02K 20K 5 secs 34.5K 37.85K 24 secs 51% 47%
20,6,4,2 28.19K 32.19K 16 secs 57.62K 62.21K 64 secs 51% 48%

Ticket Service

1 5 6 < 1 sec 8 9 < 1 sec 38% 33%
2 51 77 < 1 sec 77 107 < 1 sec 34% 28%
3 252 418 < 1 sec 360 550 < 1 sec 30% 24%
4 1.29K 2.21K < 1 sec 1.82K 2.89K < 1 sec 30% 24%
5 7.53K 12.8K < 1 sec 10.7K 16.9K < 1 sec 30% 24%
6 51.6K 84.7K 2 secs 73.5K 114K 2 secs 30% 26%
7 408K 650K 18 secs 582K 884K 24 secs 30% 26%

802.11 Prot. 2 1.12K 2.09K 2 secs 1.92K 2.62K 2 secs 10% 4%
3 59K 196K 122 secs 61K 198K 153 secs 3% 1%

Table 1. Number of states and transitions, time consumption, and reduction ratio in
model checking based on floating time transition system and timed transition system.

Using FTTS results in significant reduction in the size of the state space for
the majority of timed actor models. As shown in Table 1, in Yarn model we have
about 90% of reduction. The reason is many delay statements in the message
servers of Yarn model which results in splitting the execution of message servers
in TTS. Interleaving of the execution of these parts results in larger state spaces
in TTS. The same argument is valid to support results of Ticket Service and
WSAN. In the case of WSAN, in each row, the size (the numbers which are
separated by comma) is a combination of the sampling rate, the number of
nodes, the packet size, and the sensor task delay of the model, respectively.
As the complexity of these examples are less than Yarn model, the reduction
is about 50%. There are some exceptional models in which the state space size
and the number of transitions in TTS and FTTS are close to each other. The
model of 802.11 prot. is one of them. As there is no delay statement in the body
of the message servers of 802.11 prot., the execution of the message servers is
without progress of time. Therefore, atomic execution of message servers in
FTTS and the rather fine-grain execution of message servers in TTS results in
state spaces with comparable sizes. The effectiveness of FTTS is reduced in this
kind of models.
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Table 1 also shows that using FTTS reduces the model checking time con-
sumption (even in case of 802.11 prot.). It is because of the simplicity of the
generated state space in FTTS, using atomic execution of message servers.

5 Related Work

Here, we give an overview of the approaches which are used for dealing with
time in some widely used real-time system modeling and verification languages.

Real-Time Maude. Real-Time Maude [21, 22] is a high level declarative pro-
gramming language supporting specification of real-time and hybrid systems
in timed rewriting logic. Real-Time Maude supports both discrete and contin-
uous time models. A set of tools are developed for time-bounded analysis of
real-time Maude. Timed rewrite and Timed search build traces of the model from
its initial state and checks whether a specific state is reachable or not. Timed
model checking verifies models against time-bounded TLTL formulas. Recently,
Real-Time Maude is equipped with a model checker for TCTL properties [17].
In [24] we used these facilities for the model checking of Timed Rebeca models
against TCTL formulas. Comparing to FTTS, the mentioned tools are working
on lock step fashion which results in generating timed transition systems of the
Timed Rebeca models. To the best of our knowledge, no reduction technique
is implemented for real-time Maude models to relax lock step fashion. In addi-
tion, timed transition systems of real-time Maude models are generated to the
defined time-bound. In contrary, using shift equivalence relation in FTTS, there
is no need to define time-bound to achieve finite transition system.

Timed Automata. Timed automata [4] model the behavior of timed systems
using a set of automata that is equipped with the set of clock variables. Although
clocks are the system variables, their values can only be checked or set to zero.
The values of all clocks are increased in the same rate or can be reset to zero
while moving from one state to other states. Constraints over clocks can be
added as enabling conditions on both states and transitions. Timed automata
support parallel composition as a convenient approach for modeling complex
systems. As described in [7], parallel composition of timed automata is based
on the handshaking actions. Timed automata support both continuous and
discrete timed models [10, 14]. UPPAAL [9] generates region transition system
of timed automata (symbolic representation of timed transition system of the
timed automata) and apply verification techniques on it. Modeling of real-time
distributed systems with asynchronous message passing between components
using synchronous communication of automata increases the number of states
dramatically (because of many synchronizations among automta for model
asynchronous behavior, as shown in [16] in detail). In contrast, using FTTS
requires fewer synchronizations, because messages are executed atomically.

Erlang. Erlang is a dynamically-typed general-purpose programming lan-
guage which was developed in 1986 [6]. The concurrency model of Erlang is
based on the actor model. Fredlund et. al. in [13] proposed a timed extension
of McErlang as a model checker of timed Erlang programs. In comparison
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with FTTS, McErlang provides fine-grain model checker for Erlang systems
which results in generating timed transition system; however, states in FTTS
are coarse-grain and more abstract than that of McErlang. Experimental results
in [16] show very well the efficiency of FTTS in comparison with the results of
the approach of McErlang.

Partial Order Reduction. The reduction from TTS to FTTS has aspects that
are similar to partial order reduction (POR). In fact the relationship between
POR and FTTS is subtle. FTTS is unaware of any independence relation, per-
sistence/ample sets for timed actor systems that will result in POR techniques
producing FTTS as the reduced transition system. Moreover, not only is the for-
mal relationship between FTTS and POR nontrivial, POR techniques for timed
systems were empirically compared against the FTTS semantics and found that
the FTTS results in smaller transition systems in [16].

6 Conclusion

In this paper we proved that there is a weak bisimulation relation between timed
transitions system (TTS) – as a standard semantics of discrete time systems – and
floating time transitions system (FTTS) – as a natural semantics for time actor
systems. FTTS was previously introduced in [16] along with an algorithm for
schedulability and deadlock freedom analysis. Proving the weak bisimilarity
of TTS and FTTS, enables one to use FTTS for verification of branching-time
properties in addition to previously proposed analyses.

Experimental evidence supports our theoretical observation that FTTS of
Timed Rebeca models are smaller than TTS in general. In case of models with
many concurrently executing actors, FTTS is up to 90% smaller than TTS. There-
fore, we can efficiently model check more complicated models. In addition, our
technique and the proofs are based on the actor model of computation where
the interaction is solely based on asynchronous message passing between the
components. So, they are generalized enough to be applied to computation
models which have message-driven communication and autonomous objects
as units of concurrency such as agent-based systems.
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21. Ölveczky, P.C., Meseguer, J.: Specification and Analysis of Real-Time Systems Using
Real-Time Maude. In: Wermelinger, M., Margaria, T. (eds.) FASE. Lecture Notes in
Computer Science, vol. 2984, pp. 354–358. Springer (2004)
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urdarson, S.H.: Modelling and simulation of asynchronous real-time systems using
Timed Rebeca. Sci. Comput. Program. 89, 41–68 (2014)

24. Sabahi-Kaviani, Z., Khosravi, R., Sirjani, M., Ölveczky, P.C., Khamespanah, E.: Formal
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A Abstract Syntax of Timed Rebeca

ModelF Class∗ Main
MainF main { InstanceDcl∗ }

InstanceDclF className rebecName(〈rebecName〉∗) : (〈literal〉∗);
ClassF reactiveclass className { KnownRebecs Vars MsgSrv∗ }

KnownRebecsF knownrebecs { VarDcl∗ }
VarsF statevars { VarDcl∗ }

VarDclF type 〈v〉+;

MsgSrvF msgsrv methodName(〈type v〉∗) { Stmt∗ }
StmtF v = e; | v =?(e, 〈e〉+); | Call; | delay(t); | i f (e) { Stmt∗ }[else { Stmt∗ }]
CallF rebecName.methodName(〈e〉∗) [after(t)] [deadline(t)]

Fig. 3. Abstract syntax of Timed Rebeca (a slightly revised version of the syntax presented
in [23]). Angle brackets 〈...〉 are used as meta parenthesis, superscript + for repetition
at least once, superscript ∗ for repetition zero or more times, whereas using 〈...〉 with
repetition denotes a comma separated list. Brackets [...] indicates that the text within
the brackets is optional. Identifiers className, rebecName, methodName, v, literal, and type
denote class name, rebec name, method name, variable, literal, and type, respectively;
and e denotes an (arithmetic, boolean or nondetermistic choice) expression.

B Proof of Proposition 1

As mentioned in the semantics of Timed Rebeca, execution of a message server is
not interfered with the execution of other rebecs because in Timed Rebeca there
is no shared variable or any kind of preemption of execution of a message server
while its executing. In addition, we assumed that there is no non-deterministic
expression in messages servers of rebecs. Therefore, in all the completing traces
from state s, execution of τ transitions which are related to ri ends in the same
values for state variables and bag of sent messages. On the other hand, as delay
statements which are related to the execution of ri are the same in two different
competing traces, the time at the target states of CT1

s,i and CT2
s,i are the same.

ut

C Proof of Proposition 2

Assume that for given states s ∈ S and s′ ∈ S′ there is s R s′. Then, ∀ i ∈
I · Proj(s, i) = Proj(s′, i) which results in ∀ i ∈ I · sent(s, i) ∪ senti(CTs,i) =
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sent(s′, i). As a result, there is
⋃

i∈I (sent(s, i) ∪ senti(CTs,i)) =
⋃

i∈I (sent(s′, i))
which implies that

⋃
i∈I (Bs,i)∪⋃

i∈I senti(CTs,i) =
⋃

i∈I (Bs′,i). As the messages in⋃
i∈I senti(CTs,i) will be send in the future, none of the enabled messages in s are

in
⋃

i∈I senti(CTs,i). Therefore, enabled messages in
⋃

i∈I (Bs′,i) are in
⋃

i∈I (Bs,i).
On the other hand, based on the definition of enabled messages in TTS, en-

abled rebecs are not busy with the execution of messages in s. So, their complet-
ing trace are empty trace. Assume that ri is one of the enabled rebecs of s. Having
CTs,i = ∅ results in nowi(CTs,i) = now(s). Therefore, as Proj(s, i) = Proj(s′, i) there
is now(s′, i) = nowi(CTs,i) = now(s). So, for enabled rebecs in s, their local times
in s′ is the same as the time of state s.

Finally, as in s and s′ there are the same messages in the bag of enabled
rebecs and their times are the same, based on the definition of enabled rebecs in
Section 2.2, s and s′ have the same bag of enabled rebecs. This property holds
for both conditions one and two.

ut

D Proof of Theorem 1

To prove that the first condition of action-based weak bismulation holds for R,
based on the type of tmsg the following two cases are possible.

– s
tmsg→ t: Based on the definition of relation R, in this case projection function

for all the rebecs in s and t return the same value except for the sender and
receiver of tmsg. For the sender rebec (assume that it is ri) the difference is in
the bag of sent messages, results in sentt,i = sents,i− tmsg. On the other hand,
projection function in s′ and t′ have the same value for all the rebecs except
the sender and receiver of tmsg. For the sender rebec (assume that it is ri) the
difference is in the bag of sent messages, results in sentt′,i = sents′,i − tmsg.
For the receiver rebec (assume that it is r j), there is a completing trace CTt, j
such that Proj(t, j) returns valuation of state variables of r j from the target
state of CTt, j and messages which are sent by r j in t in union with messages
which are sent during CTt, j. In FTTS state t′, projection function returns
valuation of state variables and the sent messages of r j after the execution
of all the statements of tmsg (i.e. doing transition tmsg in FTTS) which is the
same as what projection function returns in t. Therefore, there is t R t′ as the
results of projection function in t and t′ are the same for all the rebecs.

– s τ→ t: As transition from s to t is not observable, we have to show that there
is relation R between t and s′. This way, doing a τ transition from s results
in stuttering in s′ as one of the properties of action-based weak bisimulation
relations.
Assume that τ transition belongs to rebec ri. Doing τ transition by ri makes
projection function return the same result in s and t for all the rebecs except
ri. It is because of the fact that only ri has progress which may result in
changing the valuation of its state variables or sending a message to other
rebec. For ri in state s one of the completing traces is a trace which contains
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τ transition from s to t as its first transition. Therefore, completing traces of
ri which are started from s and t are ended in the same target state, results in
Proj(s, i) = Proj(t, i). Therefore, result of projection function for all the rebecs
in TTS and FTTS are the same and t is in relation R with s′.

To prove the second condition, as all the transitions in FTTS are taking-event
transitions, tmsg must be taking-event transition. On the other hand, transition
tmsg is enabled in s as we discussed in Proposition 2. Now we can prove that
t and t′ are in relation R with the argument the same as what we did in case

s
tmsg→ t of condition one.

Finally, we have to show that the initial states of the transitions systems
are in relation R. As the program counter of all of the rebecs in s0 is set to
null, the completing traces started from s0 are ε. So, for any given rebec ri,
statei(CTs,i) = state(s, i) = state(s′, i), sent(CTs,i) = ∅ → sent(s0, i) = sent(s′0, i), and
now(CTs,i) = now(s) = now(s′, i) = 0, results in s0 R s′0. ut
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Abstract. We study the problem of automatically computing the time
complexity of concurrent object-oriented programs. To determine this
complexity we use intermediate abstract descriptions that record rele-
vant information for the time analysis (cost of statements, creations of
objects, and concurrent operations), called behavioural types. Then, we
define a translation function that takes behavioural types and makes
the parallelism explicit into so-called cost equations, which are fed to an
automatic off-the-shelf solver for obtaining the time complexity.

1 Introduction

Computing the cost of a sequential algorithm has always been a primary question
for every programmer, who learns the basic techniques in the first years of their
computer science or engineering curriculum. This cost is defined in terms of the
input values to the algorithm and over-approximates the number of the executed
instructions. In turn, given an appropriate abstraction of the CPU speed of a
runtime system, one can obtain the expected computation time of the algorithm.

The computational cost of algorithms is particularly relevant in mainstream
architectures, such as the cloud. In that context, a service is a concurrent pro-
gram that must comply with a so-called service-level agreement (SLA) regulat-
ing the cost in time and assigning penalties for its infringement [3]. The service
provider needs to make sure that the service is able to meet the SLA, for example
in terms of the end-user response time, by deciding on a resource management
policy and determining the appropriate number of virtual machine instances (or
containers) and their parameter settings (e.g., their CPU speeds). To help service
providers make correct decisions about the resource management before actu-
ally deploying the service, we need static analysis methods for resource-aware
services [6]. In previous work by the authors, cloud deployments expressed in
the formal modeling language ABS [8] have used a combination of cost analy-
sis and simulations to analyse resource management [1] and a Hoare-style proof
system to reason about end-user deadlines has been developed for sequential
executions [7]. In contrast, we are here interested in statically estimating the
computation time of concurrent services deployed on the cloud with a given
dynamic resource management policy.

Technically, this paper proposes a behavioural type system expressing the
resource costs associated with computations and study how these types can be
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used to soundly calculate the time complexity of parallel programs deployed
on the cloud. To succinctly formulate this problem, our work is developed for
tml, a small formally defined concurrent object-oriented language which uses
asynchronous communications to trigger parallel activities. The language defines
virtual machine instances in terms of dynamically created concurrent object
groups with bounds on the number of cycles they can perform per time interval.
As we are interested in the concurrent aspects of these computations, we abstract
from sequential analysis in terms of a statement job(e), which defines the number
of processing cycles required by the instruction – this is similar to the sleep(n)

operation in Java.
The analysis of behavioural types is defined by translating them in a code that

is adequate for an off-the-shelf solver – the CoFloCo solver [4]. As a consequence,
we are able to determine the computational cost of algorithms in a parametric
way with respect to their inputs.

Paper overview. The language is defined in Section 2 and we discuss restric-
tions that ease the development of our technique in Section 3. Section 4 presents
the behavioural type system and Section 5 explains the analysis of computation
time based on these behavioural types. In Section 6 we outline our correctness
proof of the type system with respect to the cost equations. In Section 7 we dis-
cuss the relevant related work and in Section 8 we deliver concluding remarks.

2 The language tml

The syntax and the semantics of tml are defined in the following two subsections;
the third subsection discusses a few examples.

Syntax. A tml program is a sequence of method definitions T m(T x) within e
{F y ; s}, ranged over by M , plus a main body {F z ; s′} with k. In tml

we distinguish between simple types T which are either integers Int or classes
Class (there is just one class in tml), and types F , which also include future types
Fut<T>. These future types let asynchronous method invocations be typed (see
below). The notation T x denotes any finite sequence of variable declarations
T x. The elements of the sequence are separated by commas. When we write
T x ; we mean a sequence T1 x1 ; · · · ; Tn xn ; when the sequence is not empty;
we mean the possibly empty sequence otherwise.

The syntax of statements s, expressions with side-effects z and expressions e
of tml is defined by the following grammar:

s ::= x = z | if e { s } else { s } | job(e) | return e | s ; s
z ::= e | e!m(e) | e.m(x) | e.get | new Class with e | new local Class

e ::= this | se | nse

A statement s may be either one of the standard operations of an imperative
language or the job statement job(e) that delays the continuation by e cycles of
the machine executing it.

An expression z may change the state of the system. In particular, it may be
an asynchronous method invocation of the form e!m(e), which does not suspend
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the caller’s execution. When the value computed by the invocation is needed,
the caller performs a non-blocking get operation: if the value needed by a pro-
cess is not available, then an awaiting process is scheduled and executed, i.e.,
await-get. Expressions z also include standard synchronous invocations e.m(e)
and new local Class, which creates a new object. The intended meaning is to
create the object in the same machine – called cog or concurrent object group
– of the caller, thus sharing the processor of the caller: operations in the same
virtual machine interleave their evaluation (even if in the following operational
semantics the parallelism is not explicit). Alternatively, one can create an object
on a different cog with new Class with e thus letting methods execute in par-
allel. In this case, e represents the capacity of the new cog, that is the number
of cycles the cog can perform per second. We assume the presence of a special
identifier this.capacity that returns the capacity of the corresponding cog.

A pure expression e can be the reserved identifier this or an integer expres-
sion. Since the analysis in Section 5 cannot deal with generic integer expressions,
we parse expressions in a careful way. In particular we split them into size ex-
pressions se, which are expressions in Presburger arithmetics (this is a decid-
able fragment of Peano arithmetics that only contains addition), and non-size
expressions nse, which are the other type of expressions. The syntax of size and
non-size expressions is the following:

nse ::= k | x | nse ≤ nse | nse and nse | nse or nse
| nse+ nse | nse− nse | nse× nse | nse/nse

se ::= ve | ve ≤ ve | se and se | se or se
ve ::= k | x | ve+ ve | k × ve
k ::= rational constants

In the paper, we assume that sequences of declarations T x and method declara-
tions M do not contain duplicate names. We also assume that return statements
have no continuation.

Semantics. The semantics of tml is defined by a transition system whose states
are configurations cn that are defined by the following syntax.

cn ::= ε | fut(f, val) | ob(o, c, p, q) | invoc(o, f, m, v) act ::= o | ε
| cog(c, act, k) | cn cn val ::= v | ⊥

p ::= {l | s} | idle l ::= [· · · , x 7→ v, · · · ]
q ::= ∅ | {l | s} | q q v ::= o | f | k

A configuration cn is a set of concurrent object groups (cogs), objects, invo-
cation messages and futures, and the empty configuration is written as ε. The
associative and commutative union operator on configurations is denoted by
whitespace. A cog is given as a term cog(c, act, k) where c and k are respectively
the identifier and the capacity of the cog, and act specifies the currently active
object. An object is written as ob(o, c, p, q) where o is the identifier of the ob-
ject, c is the identifier of the cog the object belongs to, p an active process, and q
a pool of suspended processes. A process is written as { l | s } where l denotes
local variable bindings and s a list of statements. An invocation message is a
term invoc(o, f, m, v) consisting of the callee o, the future f to which the result
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(Assign-Local)
x ∈ dom(l) v = [[e]]l

ob(o, c, {l | x = e ; s}, q)
→ ob(o, c, {l[x 7→ v] | s}, q)

(Cond-True)
true = [[e]]l

ob(o, c, {l | if e { s1 } else { s2 } ; s}, q)
→ ob(o, c, {l | s1 ; s}, q)

(Cond-False)
false = [[e]]l

ob(o, c, {l | if e { s1 } else { s2 } ; s}, q)
→ ob(o, c, {l | s2 ; s}, q)

(New)
c′ = fresh( ) o′ = fresh( ) k = [[e]]l

ob(o, c, {l | x = new Class with e ; s}, q)
→ ob(o, c, {l | x = o′ ; s}, q) ob(o′, c′, idle, ε) cog(c′, o′, k)

(New-Local)
o′ = fresh( )

ob(o, c, {l | x = new local Class ; s}, q)
→ ob(o, c, {l | x = o′ ; s}, q) ob(o′, c, idle, ε)

(Get-True)
f = [[e]]l v 6= ⊥

ob(o, c, {l | x = e.get ; s}, q) fut(f, v)
→ ob(o, c, {l | x = v ; s}, q) fut(f, v)

(Get-False)
f = [[e]]l

ob(o, c, {l | x = e.get ; s}, q) fut(f,⊥)
→ ob(o, c, idle, q ∪ {l | x = e.get ; s}) fut(f,⊥)

(Self-Sync-Call)
o = [[e]]l v = [[e]]l

f = fresh( ) {l′ | s′} = bind(o, f, m, v)
ob(o, c, {l | x = e.m(e); s}, q)

→ ob(o, c, {l′ | s′; cont(f)}, q ∪ {l | x = f.get; s}) fut(f,⊥)

(Self-Sync-Return-Sched)
f = l′(destiny)

ob(o, c, {l | cont(f)}, q ∪ {l′ | s})
→ ob(o, c, {l′ | s}, q)

(Cog-Sync-Call)
o′ = [[e]]l v = [[e]]l l(destiny) = f ′

f = fresh( ) {l′ | s′} = bind(o′, f, m, v)
ob(o, c, {l | x = e.m(e); s}, q)
ob(o′, c, idle, q′) cog(c, o, k)

→ ob(o, c, idle, q ∪ {l | x = f.get; s}) fut(f,⊥)
ob(o′, c, {l′ | s′; cont(f ′)}, q′) cog(c, o′, k)

(Cog-Sync-Return-Sched)
f = l′(destiny)

ob(o, c, {l | cont(f)}, q) cog(c, o, k)
ob(o′, c, idle, q′ ∪ { l′ | s′ })
→ ob(o, c, idle, q) cog(c, o′, k)

ob(o′, c, { l′ | s′ }, q′)

(Async-Call)
o′ = [[e]]l v = [[e]]l f = fresh( )
ob(o, c, {l | x = e!m(e) ; s}, q)

→ ob(o, c, {l | x = f ; s}, q) invoc(o′, f, m, v) fut(f,⊥)

(Bind-Mtd)
{l | s} = bind(o, f, m, v)

ob(o, c, p, q) invoc(o, f, m, v)
→ ob(o, c, p, q ∪ {l | s})

(Release-Cog)
ob(o, c, idle, q) cog(c, o, k)
→ ob(o, c, idle, q) cog(c, ε, k)

(Activate)
ob(o, c, idle, q ∪ {l | s}) cog(c, ε, k)
→ ob(o, c, {l | s}, q) cog(c, o, k)

(Return)
v = [[e]]l f = l(destiny)

ob(o, c, {l | return e}, q) fut(f,⊥)
→ ob(o, c, idle, q) fut(f, v)

(Job-0)
[[e]]l = 0

ob(o, c, {l | job(e) ; s}, q)
→ ob(o, c, {l | s}, q)

(Context)
cn→ cn′

cn cn′′ → cn′ cn′′

Fig. 1. The transition relation of tml – part 1.

of the call is returned, the method name m, and the set of actual parameter
values for the call. A future fut(f, val) contains an identifier f and a reply value
val where ⊥ indicates the reply value of the future has not been received.

The following auxiliary function is used in the semantic rules for invocations.
Let T ′ m(T x){F x′; s} be a method declaration. Then

bind(o, f, m, v) = {[destiny 7→ f, x 7→ v, x′ 7→ ⊥] | s{o/this}}

The transition rules of tml are given in Figures 1 and 2. We discuss the
most relevant ones: object creation, method invocation, and the job(e) oper-
ator. The creation of objects is handled by rules New and New-Local: the
former creates a new object inside a new cog with a given capacity e, the latter
one creates an object in the local cog. Method invocations can be either syn-
chronous or asynchronous. Rule Self-Sync-Call and Cog-Sync-Call spec-
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(Tick)

strongstable t(cn)

cn→ Φ(cn, t)
where

Φ(cn, t) =





ob(o, c, {l′ | job(k′) ; s}, q) Φ(cn′, t) if cn = ob(o, c, {l | job(e) ; s}, q) cn′
and cog(c, o, k) ∈ cn′

and k′ = [[e]]l − k ∗ t

ob(o, c, idle, q) Φ(cn′, t) if cn = ob(o, c, idle, q) cn′

cn otherwise.

Fig. 2. The transition relation of tml – part 2: the strongly stable case

ify synchronous invocations on objects belonging to the same cog of the caller.
Asynchronous invocations can be performed on every object.

In our model, the unique operation that consumes time is job(e). We notice
that the reduction rules of Figure 1 are not defined for the job(e) statement,
except the trivial case when the value of e is 0. This means that time does
not advance while non-job statements are evaluated. When the configuration
cn reaches a stable state, i.e., no other transition is possible apart from those
evaluating the job(e) statements, then the time is advanced by the minimum
value that is necessary to let at least one process start. In order to formalize
this semantics, we define the notion of stability and the update operation of a
configuration cn (with respect to a time value t). Let [[e]]l return the value of e
when variables are bound to values stored in l.

Definition 1. Let t > 0. A configuration cn is t-stable, written stable t(cn), if
any object in cn is in one of the following forms:

1. ob(o, c, { l | job(e); s }, q) with cog(c, o, k) ∈ cn and [[e]]l/k ≥ t,
2. ob(o, c, idle, q) and

i. either q = ∅,
ii. or, cog(c, o′, k) ∈ cn where o 6= o′,

iii. or, for every p ∈ q, p = { l | e.get; s } with [[e]]l = f and fut(f,⊥).

A configuration cn is strongly t-stable, written strongstable t(cn), if it is t-
stable and there is an object ob(o, c, { l | job(e); s }, q) with cog(c, o, k) ∈ cn and
[[e]]l/k = t.

Notice that t-stable (and, consequently, strongly t-stable) configurations cannot
progress anymore because every object is stuck either on a job or on unresolved
get statements. The update of cn with respect to a time value t, noted Φ(cn, t)
is defined in Fig. 2. Given these two notions, the rule Tick defines the time
progress.
The initial configuration of a program with main method {F x; s } with k is

ob(start , start, {[destiny 7→ fstart , x 7→ ⊥] | s},∅)
cog(start, start , k)
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where start and start are special cog and object names, respectively, and fstart
is a fresh future name. As usual, →∗ is the reflexive and transitive closure of →.

Examples. To begin with, we discuss the Fibonacci method. It is well known that
the computational cost of its sequential recursive implementation is exponential.
However, this is not the case for the parallel implementation. Consider

Int fib(Int n) {

if (n<=1) { return 1; }

else { Fut<Int> f; Class z; Int m1; Int m2;

job(1);

z = new Class with this.capacity ;

f = this!fib(n-1); g = z!fib(n-2);

m1 = f.get; m2 = g.get;

return m1 + m2;

}

}

Here, the recursive invocation fib(n-1) is performed on the this object while
the invocation fib(n-2) is performed on a new cog with the same capacity (i.e.,
the object referenced by z is created in a new cog set up with this.capacity),
which means that it can be performed in parallel with the former one. It turns
out that the cost of the following invocation is n.

Class z; Int m; Int x;

x = 1;

z = new Class with x;

m = z.fib(n);

Observe that, by changing the line x = 1; into x = 2; we obtain a cost of n/2.
Our semantics does not exclude paradoxical behaviours of programs that

perform infinite actions without consuming time (preventing the rule (Tick) to
apply), such as this one

Int foo() { Int m; m = this.foo(); return m; }

These kind of behaviours are well-known in the literature, (cf. Zeno behaviours)
and they may be easily excluded from our analysis by constraining recursive
invocations to be prefixed by a job(e)-statement, with a positive e. It is worth to
observe that this condition is not sufficient to eliminate paradoxical behaviours.
In fact we need job(e)-statements where e is greater than 1. For instance the
method below does not terminate and, when invoked with this.fake(2), where
this is a cog of capacity 1, has cost 1.

Int fake(Int n) {

Int m; Class x;

x = new Class with 2*n; job(1); m = this.fake(2*n); return m;

}

In the examples above, the statement job(e) is a cost annotation that spec-
ifies how many processing cycles are needed by the subsequent statement in the
code. We notice that this operation can also be used to program a timer which
suspends the current execution for e units of time. For instance, let

157



Int wait(Int n) { job(n); return 0; }

Then, invoking wait on an object with capacity 1

Class timer; Fut<Class> f; Class x;

timer = new Class with 1;

f = timer!wait(5); x = f.get;

one gets the suspension of the current thread for 5 units of time.

3 Issues in computing the cost of tml programs

The computation time analysis of tml programs is demanding. To highlight the
difficulties, we discuss a number of methods.

Int wrapper(Class x) {

Fut<Int> f; Int z;

job(1) ; f = x!server(); z = f.get;

return z;

}

Method wrapper performs an invocation on its argument x. In order to determine
the cost of wrapper, we notice that, if x is in the same cog of the carrier, then its
cost is (assume that the capacity of the carrier is 1): 1+cost(server) because the
two invocations are sequentialized. However, if the cogs of x and of the carrier
are different then we are not able to compute the cost because we have no clue
about the state of the cog of x. Next consider the following definition of wrapper

Int wrapper_with_log(Class x) {

Fut<Int> f; Fut<Int> g; Int z;

job(1) ; f = x!server(); g = x!print_log(); z = f.get;

return z;

}

In this case the wrapper also asks the server to print its log and this in-
vocation is not synchronized. We notice that the cost of wrapper_with_log is
not anymore 1 + cost(server) (assuming that x is in the same cog of the car-
rier) because print_log might be executed before server. Therefore the cost of
wrapper_with_log is 1 + cost(server) + cost(print log).

Finally, consider the following wrapper that, for reliability issues, also trig-
gers a similar computation on a new cog without synchronising with it:

Int reliable_wrapper_with_log(Class x) {

Fut<Int> f; Fut<Int> g; Int z; Class y;

job(1) ; f = x!server(); g = x!print_log(); z = f.get;

y = new Class with 1;

f = y!server() ;

return z;

}

What is the cost of reliable_wrapper_with_log? Well, the answer here is
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debatable: one might discard the cost of y!server() because it is useless for the
value returned by reliable_wrapper_with_log or one might count it because
one wants to count every computation that has been triggered by a method in
its cost. In this paper we adhere to the second alternative; however we think
that a better solution should be to return different cost for a method: a strict
cost, which spots the cost that is necessary for computing the returned value,
and an overall cost, which is the one computed in this paper.

Anyway, by the foregoing discussion, as an initial step towards the time
analysis of tml programs, we simplify our analysis by imposing the following
constraint:

– it is possible to invoke methods on objects either in the same cog of the caller
or on newly created cogs.

The above constraint means that, if the callee of an invocation is one of the
arguments of a method then it must be in the same cog of the caller. It also
means that, if an invocation is performed on a returned object then this object
must be in the same cog of the carrier. We will enforce these constraints in the
typing system of the following section – see rule T-Invoke.

4 A behavioural type system for tml

In order to analyse the computation time of tml programs we use abstract de-
scriptions, called behavioural types, which are intermediate codes highlighting
the features of tml programs that are relevant for the analysis in Section 5.
These abstract descriptions support compositional reasoning and are associated
to programs by means of a type system.

The syntax of behavioural types is defined by the following rules:

t ::= -- | se | c[se] basic value
x ::= f | t extended value

a ::= e | νc[se] | m(t)→ t | νf : m(t)→ t | fX atom
b ::= a . Γ | a # b | (se){b} | b+ b behavioural type

where c, c′, · · · range over cog names and f , f ′, · · · range over future names.
Basic values t are either generic (non-size) expressions -- or size expressions se
or the type c[se] of an object of cog c with capacity se. The extended values add
future names to basic values.

Atoms a define creation of cogs (νc[se]), synchronous and asynchronous
method invocations (m(t)→ t and νf : m(t)→ t, respectively), and synchroniza-
tions on asynchronous invocations (fX). We observe that cog creations always
carry a capacity, which has to be a size expression because our analysis in the
next section cannot deal with generic expressions. Behavioural types b are se-
quences of atoms a #b′ or conditionals, typically (se){b}+ (¬se){b′} or b+b

′,
according to whether the boolean guard is a size expression that depends on
the arguments of a method or not. In order to type sequential composition in a
precise way (see rule T-Seq), the leaves of behavioural types are labelled with
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(T-Var)

x ∈ dom(Γ )

Γ ` x : Γ (x)

(T-Se)

Γ ` se : se
(T-Nse)

Γ ` nse : --

(T-Method)

Γ (m) = (t)→ t
′

fv(t′) \ fv(t) 6= ∅ implies σ(t′) fresh

Γ ` m(σ(t)) : σ(t′)

(T-New)

Γ ` e : se c fresh

Γ ` new Class with e : c[se], [νc[se] . Γ [c 7→ se]]

(T-New-Local)

Γ ` this : c[se]

Γ ` new local Class : c[se], [0 . Γ]

(T-Invoke-Sync)

Γ ` e : c[se] Γ (this) = c[se]
Γ ` e : t Γ ` m(c[se], t) : t′

Γ ` e.m(e) : t′, [m(c[se], t)→ t
′ . Γ]

(T-Invoke)

Γ ` e : c[se] (c ∈ dom(Γ ) or Γ (this) = c[se])
Γ ` e : t Γ ` m(c[se], t) : t′ f fresh

Γ ` e!m(e) : f, [νf : m(c[se], t)→ t
′ . Γ [f 7→ t

′]]

(T-Get)

Γ ` e : f Γ (f) = t

Γ ` e.get : t, [fX . Γ [f 7→ t
X]]

(T-Get-Top)

Γ ` e : f Γ (f) = t
X

Γ ` e.get : t, [0 . Γ]

Fig. 3. Typing rules for expressions

environments, ranged over by Γ , Γ ′, · · · . Environments are maps from method
names m to terms (t)→ t, from variables to extended values x, and from future
names to values that are either t or tX.

The type system uses judgments of the following form:

– Γ ` e : x for pure expressions e, Γ ` f : t or Γ ` f : tX for future names f ,
and Γ ` m(t) : t for methods.

– Γ ` z : x, [a . Γ ′] for expressions with side effects z, where x is the value,
a .Γ ′ is the corresponding behavioural type, where Γ ′ is the environment Γ
with possible updates of variables and future names.

– Γ ` s : b, in this case the updated environments Γ ′ are inside the behavioural
type, in correspondence of every branch of its.

Since Γ is a function, we use the standard predicates x ∈ dom(Γ ) or x 6∈
dom(Γ ). Moreover, we define

Γ [x 7→ x](y)
def
=

{
x if y = x
Γ (y) otherwise

The multi-hole contexts C[ ] are defined by the following syntax:

C[ ] ::= [ ] | a # C[ ] | C[ ] + C[ ] | (se){C[ ]}
and, whenever b = C[a1 . Γ1] · · · [an . Γn], then b[x 7→ x] is defined as C[a1 .
Γ1[x 7→ x]] · · · [an . Γn[x 7→ x]].

The typing rules for expressions are defined in Figure 3. These rules are not
standard because (size) expressions containing method’s arguments are typed
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(T-Assign)

Γ ` rhs : x, [a . Γ ′]
Γ ` x = rhs : a . Γ ′[x 7→ x]

(T-Job)

Γ ` e : se Γ ` this : c[se′]

Γ ` job(e) : se/se′ . Γ

(T-Return)

Γ ` e : t Γ ` destiny : t

Γ ` return e : 0 . Γ

(T-Seq)

Γ ` s : C[a1 . Γ1] · · · [an . Γn]
Γi ` s′ : b′i

Γ ` s ; s′ : C[a1 # b′1] · · · [an # b′n]

(T-If-Nse)

Γ ` e : -- Γ ` s : b Γ ` s′ : b′

Γ ` if e { s } else { s′ } : b+ b
′

(T-If-Se)

Γ ` e : se Γ ` s : b Γ ` s′ : b′

Γ ` if e { s } else { s′ } : (se){b}+ (¬se){b′}

Fig. 4. Typing rules for statements

(T-Method)

Γ (m) = (tt, t)→ tr

Γ [this 7→ tt][destiny 7→ tr][x 7→ t] ` s : C[a1 . Γ1] · · · [an . Γn]

Γ ` T m (T x) { s } : m(tt, t){ C[a1 .∅] · · · [an .∅] } : tr

(T-Class)

Γ `M : C Γ [this 7→ start[k]][x 7→ t] ` s : C[a1 . Γ1] · · · [an . Γn]

Γ `M {T x ; s } with k : C, C[a1 .∅] · · · [an .∅]

Fig. 5. Typing rules for declarations

with the expressions themselves. This is crucial in the cost analysis of Section 5.
In particular, cog creation is typed by rule T-New, with value c[se], where
c is the fresh name associated with the new cog and se is the value associ-
ated with the declared capacity. The behavioural type for the cog creation is
νc[se] . Γ [c 7→ se], where the newly created cog is added to Γ . In this way, it is
possible to verify whether the receiver of a method invocation is within a locally
created cog or not by testing whether the receiver belongs to dom(Γ ) or not,
respectively (cf. rule T-Invoke). Object creation (cf. rule T-New-Local) is
typed as the cog creation, with the exception that the cog name and the ca-
pacity value are taken from the local cog and the behavioural type is empty.
Rule T-Invoke types method invocations e!m(e) by using a fresh future name
f that is associated to the method name, the cog name of the callee and the
arguments. In the updated environment f is associated with the returned value.
Next we discuss the constraints in the premise of the rule. As we discussed in
Section 2, asynchronous invocations are allowed on callees located in the current
cog, Γ (this) = c[se], or on a newly created object which resides in a fresh cog,
c ∈ dom(Γ ). Rule T-Get defines the synchronization with a method invocation
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that corresponds to a future f . The expression is typed with the value t of f in
the environment and behavioural type fX. Γ is then updated for recording that
the synchronization has been already performed, thus any subsequent synchro-
nization on the same value would not imply any waiting time (see that in rule
T-Get-Top the behavioural type is 0). The synchronous method invocation in
rule T-Invoke-Sync is directly typed with the return value t

′ of the method
and with the corresponding behavioural type. The rule enforces that the cog of
the callee coincides with the local one.

The typing rules for statements are presented in Figure 4. The behavioural
type T-Job expresses the time consumption for an object with capacity se′ to
perform se processing cycles: this time is given by se/se′, which we observe is in
general a rational number. We will return to this point in Section 5.

The typing rules for method and class declarations are shown in Figure 5.

Examples The behavioural type of the fib method discussed in Section 2 is

fib(c[x],n) {

(n<=1){ 0 .∅ }

+

(n>=2){

1/x# d[x]# νf : fib(c[x],n-1)# νg: fib(d[x],n-2)# fX# gX# 0 .∅
}

} : _

5 The time analysis

The behavioural types returned by the system defined in Section 4 are used to
compute upper bounds of time complexity of a tml program. This computation
is performed by an off-the-shelf solver – the CoFloCo solver [4] – and, in this
section, we discuss the translation of a behavioural type program into a set of
cost equations that are fed to the solver. These cost equations are terms

m(x) = exp [se]

where m is a (cost) function symbol, exp is an expression that may contain (cost)
function symbols applications (we do not define the syntax of exp, which may be
derived by the following equations; the reader may refer to [4]), and se is a size
expression whose variables are contained in x. Basically, our translation maps
method types into cost equations, where (i) method invocations are translated
into function applications, and (ii) cost expressions se occurring in the types are
left unmodified. The difficulties of the translation is that the cost equations must
account for the parallelism of processes in different cogs and for sequentiality of
processes in the same cog. For example, in the following code:

x = new Class with c; y = new Class with d;

f = x!m(); g = y!n(); u = g.get ; u = f.get ;
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the invocations of m and n will run in parallel, therefore their cost will be
max(t, t′), where t is the time of executing m on x and t′ is the time execut-
ing n on y. On the contrary, in the code

x = new local Class; y = new local Class;

f = x!m(); g = y!n(); u = g.get; u = f.get;

the two invocations are queued for being executed on the same cog. Therefore
the time needed for executing them will be t + t′, where t is time needed for
executing m on x, and t′ is the time needed for executing n on y. To abstract
away the execution order of the invocations, the sum of the execution time of
all unsynchronized methods from the same cog are considered when one of the
methods are synchronized with a get-statement. To avoid calculating the execu-
tion time of the unsynchronized methods in the same cog more than necessary,
their estimated cost are ignored.

In this example, the sum of the execution time of the two invocations t+ t′ is
considered as the time taken for executing n on y when it is synchronized with
g.get, while no time is taken for m on x when synchronized with f.get.

The translate function. The translation of behavioural types into cost equations
is carried out by the function translate, defined below. This function parses
atoms, behavioural types or declarations of methods and classes. We will use the
following auxiliary function that removes cog names from (tuples of) t terms:

b c = bec = e bc[e]c = e bt1, . . . , tnc = bt1c, . . . , btnc

We will also use translation environments, ranged over by Ψ , Ψ ′, · · · , which map
future names to pairs (e, m(t)) that records the (over-approximation of the) time
when the method has been invoked and the invocation.

In the case of atoms, translate takes four inputs: a translation environ-
ment Ψ , the cog name of the carrier, an over-approximated cost e of an execution
branch, and the atom a. In this case, translate returns an updated translation
environment and the cost. It is defined as follows.

translate(Ψ, c, e,a) =



(Ψ, e+ e′) when a = e′

(Ψ, e) when a = νc[e′]

(Ψ, e+ m(btc)) when a = m(t)→ t
′

(Ψ [f 7→ (e, m(t))], e) when a = (νf : m(t)→ t
′)

(Ψ \ F, e+ e1))) when a = fX and Ψ(f) = (ef , mf (c[e′], tf ))
let F = { g | Ψ(g) = (eg, mg(c[e

′], tg) } then
and e1 =

∑{mg(bt′gc) | (eg, mg(t′g)) ∈ Ψ(F )}
(Ψ \ F,max(e, e1 + e2)) when a = fX and Ψ(f) = (ef , mf (c′[e′], tf )) and c 6= c′

let F = { g | Ψ(g) = (eg, mg(c
′[e′], tg) } then

e1 =
∑{mg(bt′gc) | (eg, mg(t′g)) ∈ Ψ(F )}

and e2 = max{eg | (eg, mg(t′g)) ∈ Ψ(F )}
(Ψ, e) when a = fX and f /∈ dom(Ψ)
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The interesting case of translate is when the atom is fX. There are three
cases:

1. the synchronization is with a method whose callee is an object of the same
cog. In this case its cost must be added. However, it is not possible to know
when the method will be actually scheduled. Therefore we sum the costs of
all the methods running on the same cog (worst case) – the set F in the
formula – and we remove them from the translation environment.

2. the synchronization is with a method whose callee is an object on a different
cog c′. In this case we use the cost that we stored in Ψ(f). Let Ψ(f) =
(ef , mf (c′[e′], tf )), then ef represents the time of the invocation. Therefore
the cost of the invocation is ef+mf (e′, btfc). Since the invocation is in parallel
with the thread of the cog c, the overall cost will be max (e, ef +mf (e′, btfc)).
As in case 1, we compute the worst scheduler choice on c′. Therefore, instead
of taking ef + mf (e′, btfc), we compute the cost of all the methods running
on c′ – the set F in the formula – and we remove them from the translation
environment.

3. the future does not belong to Ψ . That is the cost of the invocation which
has been already computed. In this case, the value e does not change.

In the case of behavioural types, translate takes as input a translation
environment, the cog name of the carrier, an over-approximated cost of the
current execution branch (e1)e2, where e1 indicates the conditions corresponding
to the branch, and the behavioural type a.

translate(Ψ, c, (e1)e2,b) =



{ (Ψ ′, (e1)e′2) } when b = a . Γ and translate(Ψ, c, e2,a) = (Ψ ′, e′2)

C when b = a # b′ and translate(Ψ, c, e2,a) = (Ψ ′, e′2)
and translate(Ψ ′, c, (e1)e′2,b

′) = C

C ∪ C′ when b = b1 + b2 and translate(Ψ, c, (e1)e2,b1) = C
and translate(Ψ, c, (e1)e2,b2) = C′

C when b = (e){b′ } and translate(Ψ, c, (e1 ∧ e)e2,b′) = C

The translation of the behavioural types of a method is given below. Let

dom(Ψ) = {f1, · · · , fn}. Then we define ΨX def
= f1

X # · · · # fnX.

translate(m(c[e], t){b } : t) =




m(e, e) = e′1 + e′′1 [e1]
...

m(e, e) = e′n + e′′n [en]

where translate(∅, c, 0,b) = {Ψi, (ei)e′i | 1 ≤ i ≤ n }, and e = btc,
and e′′i = translate(Ψi, c, 0, Ψi

X .∅) .

where [ei] are the conditions for branching the possible execution paths of
method m(e, e), and e′i + e′′i is the over-approximation of the cost for each path.

164



In particular, e′i corresponds to the cost of the synchronized operations in each
path (e.g. jobs and gets), while e′′i corresponds to the cost of the asynchronous
method invocations triggered by the method, but not synchronized within the
method body.

Examples We show the translation of the behavioural type of fibonacci presented
in Section 4. Let b = (se){0.∅}+(¬se){b′}, where se = (n ≤ 1) and b

′ = 1/e #
νf : fib(c[e], n− 1) # νg: fib(c′[e], n− 2) # fX # gX # 0 . ∅}. Let also Ψ = Ψ1∪Ψ2,
where Ψ1 = [f 7→ (1/e, fib(e, n− 1))] and Ψ2 = [g 7→ (1/e, fib(e, n− 2))].

The following equations summarize the translation of the behavioural type
of the fibonacci method.

translate(∅, c, 0,b)
= translate(∅, c, 0, (se) { 0 .∅ }) ∪ translate(∅, c, 0, (¬se) {b′ })
= translate(∅, c, (se)0, { 0 .∅ }) ∪ translate(∅, c, (¬se)0, { 1/e # . . . })
= { (se)0 } ∪ translate(∅, c, (¬se)(1/e), { νf : fib(c[e], n− 1) # . . . })
= { (se)0 } ∪ translate(Ψ1, c, (¬se)(1/e), { νg: fib(c′[e], n− 2) # . . . })
= { (se)0 } ∪ translate(Ψ, c, (¬se)(1/e), { fX # gX # . . . })
= { (se)0 } ∪ translate(Ψ2, c, (¬se)(1/e+ fib(e, n− 1)), { gX # . . . })
= { (se)0 } ∪ translate(∅, c, (¬se)(1/e+ max(fib(e, n− 1), fib(e, n− 2))), { 0 .∅ })
= { (se)0 } ∪ { (¬se)(1/e+ max(fib(e, n− 1), fib(e, n− 2))) }

translate(∅, c, 0, 0) = (∅, 0)
translate(∅, c, 0, 1/e) = (∅, 1/e)
translate(∅, c, 1/e, νf : fib(c[e], n− 1)) = (Ψ1, 1/e)
translate(Ψ1, c, 1/e, νg: fib(c′[e], n− 2)) = (Ψ, 1/e)

translate(Ψ, c, 1/e, fX) = (Ψ2, 1/e+ fib(e, n− 1))

translate(Ψ2, c, 1/e+ fib(e, n− 1), gX) = (∅, 1/e+ max(fib(e, n− 1), fib(e, n− 2)))

translate(fib (c[e], n){b } : --) =


fib(e, n) = 0 [n <= 1]

fib(e, n) = 1/e+ max(fib(e, n− 1), fib(e, n− 2)) [n >= 2]

Remark 1. Rational numbers are produced by the rule T-Job of our type sys-
tem. In particular behavioural types may manifest terms se/se′ where se gives
the processing cycles defined by the job operation and se′ specifies the number
of processing cycles per unit of time the corresponding cog is able to handle.
Unfortunately, our backend solver – CoFloCo – cannot handle rationals se/se′

where se′ is a variable. This is the case, for instance, of our fibonacci example,
where the cost of each iteration is 1/x, where x is a parameter. Therefore, in
order to analyse this example, we need to determine a priori the capacity to be
a constant – say 2 –, obtaining the following input for the solver:
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eq(f(E,N),0,[],[-N>=1,2*E=1]).

eq(f(E,N),nat(E),[f(E,N-1)],[N>=2,2*E=1]).

eq(f(E,N),nat(E),[f(E,N-2)],[N>=2,2*E=1]).

Then the solver gives the following upper bound:

nat(N-1)* (1/2).

It is worth to notice that fixing the fibonacci method is easy because the
capacity does not change during the evaluation of the method. This is not always
the case, as in the following alternative definition of fibonacci:

Int fib_alt(Int n) within n {

if (n<=1) { return 1; }

else { Fut <Int > f; Class z; Int m1; Int m2;

job (1);

z = new Class with (this.capacity *2) ;

f = this!fib_alt(n-1); g = z!fib_alt(n-2);

m1 = f.get; m2 = g.get;

return m1+m2; }

}

In this case, the recursive invocation z!fib alt(n-2) is performed on a cog with
twice the capacity of the current one and CoFloCo is not able to handle it. It
is worth to observe that this is a problem of the solver, which is otherwise very
powerful for most of the examples. Our behavioural types carry enough infor-
mation for dealing with more complex examples, so we will consider alternative
solvers or combination of them for dealing with examples like fib alt.

6 Properties

In order to prove the correctness of our system, we need to show that (i) the
behavioral type system is correct, and (ii) the computation time returned by
the solver is an upper bound of the actual cost of the computation.

The correctness of the type system in Section 4 is demonstrated by means
of a subject reduction theorem expressing that if a runtime configuration cn is
well typed and cn → cn′ then cn′ is well-typed as well, and the computation
time of cn is larger or equal to that of cn′. In order to formalize this theorem we
extend the typing to configurations and we also use extended behavioral types
k with the following syntax

k ::= b | [b]cf | k ‖ k runtime behavioral type

The type [b]cf expresses the behavior of an asynchronous method bound to
the future f and running in the cog c; the type k ‖ k′ expresses the parallel
execution of methods in k and in k

′.
We then define a relation Dt between runtime behavioral types that relates

types. The definition is algebraic and k Dt k′ is intended to mean that the
computational time of k is at least that of k′+t (or conversely the computational
time of k′ is at most that of k− t). This is actually the purpose of our theorems.
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Theorem 1 (Subject Reduction). Let cn be a configuration of a tml program
and let k be its behavioural type. If cn is not strongly t-stable and cn→ cn′ then
there exists k′ typing cn′ such that k D0 k

′. If cn is strongly t-stable and cn→ cn′

then there exists k′ typing cn′ such that k Dt k′.

The proof of is a standard case analysis on the last reduction rule applied.
The second part of the proof requires an extension of the translate func-

tion to runtime behavioural types. We therefore define a cost of the equations
Ek returned by translate(k) – noted cost(Ek) – by unfolding the equational
definitions.

Theorem 2 (Correctness). If k Dt k′, then cost(Ek) ≥ cost(Ek′) + t.

As a byproduct of Theorems 1 and 2, we obtain the correctness of our technique,
modulo the correctness of the solver.

7 Related work

In contrast to the static time analysis for sequential executions proposed in [7],
the paper proposes an approach to analyse time complexity for concurrent pro-
grams. Instead of using a Hoare-style proof system to reason about end-user
deadlines, we estimate the execution time of a concurrent program by deriving
the time-consuming behaviour with a type-and-effect system.

Static time analysis approaches for concurrent programs can be divided into
two main categories: those based on type-and-effect systems and those based on
abstract interpretation – see references in [9]. Type-and-effect systems (i) collect
constraints on type and resource variables and (ii) solve these constraints. The
difference with respect to our approach is that we do not perform the analy-
sis during the type inference. We use the type system for deriving behavioural
types of methods and, in a second phase, we use them to run a (non compo-
sitional) analysis that returns cost upper bounds. This dichotomy allows us to
be more precise, avoiding unification of variables that are performed during the
type derivation. In addition, we notice that the techniques in the literature are
devised for programs where parallel modules of sequential code are running. The
concurrency is not part of the language, but used for parallelising the execution.

Abstract interpretation techniques have been proposed addressing domains
carrying quantitative information, such as resource consumption. One of the
main advantages of abstract interpretation is the fact that many practically
useful optimization techniques have been developed for it. Consequently, several
well-developed automatic solvers for cost analysis already exist. These techniques
either use finite domains or use expedients (widening or narrowing functions) to
guarantee the termination of the fix-point generation. For this reason, solvers
often return inaccurate answers when fed with systems that are finite but not
statically bounded. For instance, an abstract interpretation technique that is
very close to our contribution is [2]. The analysis of this paper targets a language
with the same concurrency model as ours, and the backend solver for our analysis,
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CoFloCo, is a slightly modified version of the solver used by [2]. However the two
techniques differ profoundly in the resulting cost equations and in the way they
are produced. Our technique computes the cost by means of a type system,
therefore every method has an associated type, which is parametric with respect
to the arguments. Then these types are translated into a bunch of cost equations
that may be composed with those of other methods. So our approach supports a
technique similar to separate compilation, and is able to deal with systems that
create statically an unbounded but finite number of nodes. On the contrary,
the technique in [2] is not compositional because it takes the whole program
and computes the parts that may run in parallel. Then the cost equations are
generated accordingly. This has the advantage that their technique does not
have any restriction on invocations on arguments of methods that are (currently)
present in our one.

We finally observe that our behavioural types may play a relevant role in a
cloud computing setting because they may be considered as abstract descriptions
of a method suited for SLA compliance.

8 Conclusions

This article presents a technique for computing the time of concurrent object-
oriented programs by using behavioural types. The programming language we
have studied features an explicit cost annotation operation that define the num-
ber of machine cycles required before executing the continuation. The actual
computation activities of the program are abstracted by job(e) statements,
which are the unique operations that consume time. The computational cost is
then measured by introducing the notion of (strong) t-stability (cf. Definition 1),
which represents the ticking of time and expresses that up to t time steps no
control activities are possible. A Subject Reduction theorem (Theorem 1), then,
relates this stability property to the derived types by stating that the consump-
tion of t time steps by job statements is properly reflected in the type system.
Finally, Theorem 2 states that the solution of the cost equations obtained by
translation of the types provides an upper bound of the execution times provided
by the type system and thus, by Theorem 1, of the actual computational cost.

Our behavioural types are translated into so-called cost equations that are
fed to a solver that is already available in the literature – the CoFloCo solver [4].
As discussed in Remark 1, CoFloCo cannot handle rational numbers with vari-
ables at the denominator. In our system, this happens very often. In fact, the
number pc of processing cycles needed for the computation of a job(pc) is divided
by the speed s of the machine running it. This gives the cost in terms of time
of the job(pc) statement. When the capacity is not a constant, but depends on
the value of some parameter and changes over time, then we get the untreatable
rational expression. It is worth to observe that this is a problem of the solver
(otherwise very powerful for most of the examples), while our behavioural types
carry enough information for computing the cost also in these cases. We plan to
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consider alternative solvers or a combination of them for dealing with complex
examples.

Our current technique does not address the full language. In particular we are
still not able to compute costs of methods that contain invocations to arguments
which do not live in the same machine (which is formalized by the notion of cog
in our language). In fact, in this case it is not possible to estimate the cost
without any indication of the state of the remote machine. A possible solution
to this issue is to deliver costs of methods that are parametric with respect to the
state of remote machines passed as argument. We will investigate this solution
in future work.

In this paper, the cost of a method also includes the cost of the asynchronous
invocations in its body that have not been synchronized. A more refined analysis,
combined with the resource analysis of [5], might consider the cost of each ma-
chine, instead of the overall cost. That is, one should count the cost of a method
per machine rather than in a cumulative way. While these values are identical
when the invocations are always synchronized, this is not the case for unsynchro-
nized invocation and a disaggregated analysis might return better estimations
of virtual machine usage.
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Abstract. To enable verification of a complex C-program, so called
compositional verification can be used where the specification for the
C-program is split into a set of specifications organized such that the
fact that the C-program satisfies its specification can be inferred from
verifying that parts of the C-program satisfy their specifications. To sup-
port the approach in practice, specifications must be organized in parallel
to a formal architecture model capturing the C-program as a hierarchical
structure of components with well-defined interfaces. Previous modeling
approaches lack support for formal architecture modeling of C-programs.
Therefore, a general and formal approach for architecture modeling of se-
quential C-programs is presented, to support compositional verification,
as well as to aid design and management of such C-programs in general.

1 Introduction

Consider that, due to required effort/cost, it is infeasible to use a direct verifi-
cation approach to ensure that a complex C-program satisfies its specification.
A solution to such an issue is to use so called compositional verification [22]
where the specification is decomposed into a set of specifications organized such
that the fact that the C-program satisfies its specification can be inferred from
verifying that parts of the C-program satisfy their specifications. In addition,
compositional verification enables the verification of open systems, i.e. systems
to which the environment is unknown [22]. Thus, as shown in scenarios in [27],
compositional verification supports parallel development and outsourcing.

While providing a means to manage the development of complex C-programs,
as well as systems in general, compositional verification requires the effort of
iteratively decomposing specifications into lower-level specifications that can be
satisfied by parts of a system. As made clear in [29], in order to support such
an effort in practice, the specifications must be decomposed in parallel to an
architecture model of a system where the model formally captures a structure of
the system as a hierarchy of components with well-defined interfaces over which
specifications are expressed.

Hence, in order to provide practical support for compositional verification of
C-programs, an architecture model of a C-program is needed. Considering cur-
rent approaches for architecture modeling, general purpose Modeling Languages
(MLs) such as SysML [10] or UML [23] and Architecture Description Languages
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(ADL) such as AADL [9] are often used for modeling C-programs, but since there
exists no uniform mapping from a C-program to these languages, the modeling
is essentially ad-hoc. Models of C-programs are used in approaches for formal
verification of C-programs (see e.g. [6, 12] or [11] for an overview) where a C-
program is translated into a formal model that is fed into a tool for semi or fully
automated analysis. However, these formal models do not capture a C-program
as a hierarchical structure of components, and do not, therefore, provide support
for decomposing specifications.

Thus, despite the fact that the C-language is one of the most popular pro-
gramming languages [5], there exists limited support for architecture modeling
of C-programs. The need for such support is crucial to manage the development
of embedded SoftWare (SW) that is typically implemented as C-code. Moreover,
considering automotive embedded SW, the idea of compositional verification has
been adopted by the automotive functional safety standard ISO 26262 [13]. Ac-
cording to ISO 26262, top-level SW safety specifications must be decomposed
all the way down to low-level safety specifications for SW units, such that the
top-level SW safety specifications are satisfied, if the low-level safety specifica-
tions are satisfied [26, 28]. In addition to providing support for compositional
verification as a means to manage the complexity of C-programs, as well as
to facilitate compliance with ISO 26262, architecture models can also serve as
high-level descriptions of C-programs. Considering these aspects, as the main
contribution, the present paper introduces a general and formal approach for
architecture modeling of C-programs intended for sequential execution.

More specifically, the proposed architecture model captures built-in means
of encapsulation in the C-language, i.e. C-modules and C-functions, as well as
higher-level encapsulation of C-modules into packages and layers that are intro-
duced by engineers to structure the C-program into e.g. Operating System (OS)
services (e.g. scheduling) and communication services (Controller Area Network
(CAN), I/O, etc.). Hence, the architecture model does not only provide a foun-
dation for organizing specifications hierarchically as required by ISO 26262, but
also allows capturing intended service dependencies [20] between layers and pack-
ages in the manner in which the specifications are organized. Each level of the
program structure is modeled as a component with a well-defined interface, pro-
viding fundamental support for expressing specifications. Furthermore, explicit
support is given for expressing specifications as contracts [3, 4, 7, 19,24].

The architecture model is obtained by refining the well-established general
compositional framework [3, 24] for Cyber-Physical Systems [18], i.e. systems
composed of heterogeneous parts, e.g. SW, HW, and physical, in a context of C-
programs. The framework [3,24] relies on a general formalism where component
interfaces are modeled as sets of variables and where assertions, i.e. sets of value
sequences (runs), are used for modeling specifications and component behaviors
over the interfaces. Considering the generality of the framework [3,24], the num-
ber of ways to model a C-program using the framework is practically infinite. The
refinement reduces the abstract notion of interfaces to instead model constructs
in the C-language, e.g. C-function prototypes, allowing a unique mapping from
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a C-program to an architecture model. Component behaviors and specifications
are intentionally left expressed in the abstract form of assertions to both allow
the architecture model and its specifications to be combined with models of, and
specifications for, parts in other domains, as well as to support the instantiation
of a more concrete formalism, e.g. a specific ML or ADL, suitable for a particular
use-case. To illustrate support for the latter, it is shown how assertions can be
expressed as Labeled Transition Systems (LTSs), which are used in approaches
for SW verification, e.g. [6, 25].

The proposed architecture model can be compared with formal models in SW
compositional frameworks (see e.g. [1, 17,25] or [22] for a survey). Out of these,
the works [1, 25] are the most similar to the present paper since the interfaces
of components are clear. However, the model in [25] does not support modeling
encapsulation of local C-variables and is tailored for capturing safety control flow
properties, whereas the architecture model in the present paper is not limited to
capturing any property in particular. In contrast to [1], the architecture model
in the present paper supports modeling recursion and global variables that are
written to by different parts of a C-program. Moreover, the works [1, 25] do
not provide specific guidance on how a C-program can be modeled whereas the
present paper provides a unique mapping from a C-program to an architecture
model.

The paper is organized as follows. Sec. 2 and Sec. 3 present relevant concepts
in the C-language and originating from the framework [3,24], respectively. Sec. 4
presents a refinement of [3,24] and the proposed formal approach for architectural
modeling of C-programs. Sec. 5 presents an industrial case-study and Sec. 6
summarizes the paper and draws conclusions.

2 The C-Language

This section introduces concepts describing constructs in the C-language [16]
or the manner in which C-code is organized into a program. The concepts will
be frequently used in Sec. 4 that presents the proposed general approach for
architecture modeling of sequential C-programs.

A C-module is a preprocessed .c-file, i.e. a file where all preprocessing di-
rectives, e.g. #include, as well as constants and macro definitions, have been
replaced by a preprocessor. A C-variable is a variable that is declared in a C-
module. A C-function is a block of C code consisting of: a prototype [16], i.e.
a full declaration of the C-function including the return type, the number and
order of arguments, and their types; and a body, i.e. a list of declarations and
statements, enclosed in brackets. In the following, a prototype that is part of a
C-function, but not within the body of the C-function, will be referred to as the
prototype of the C-function.

For example, consider the .c-files mod.c and mMod.c, shown in Fig. 1. Prepro-
cessed versions mod and mMod of mod.c and mMod.c, respectively, are C-modules.
The .c-file mod.c contains a C-function step that increases the value of a global
C-variable c by 1 and a C-function add that returns the sum of the values of two
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formal parameters a and b. The C-function main calls step repeatedly, resetting
c to 0 when it reaches 10. The block of code consisting of the lines 3-4 in Fig. 1
is the C-function add, contained in mod where code line 3 is the prototype of add
and where code line 4 is the body of add.

1 // --------------mod.c--------------

2 int c=0; // initialization of global counter ’c’

3 int add(int a, int b) //C-function returning the sum a+b

4 {int s=0; s = a+b; return s;}

5 void step(void) //C-function that increases counter by 1

6 {c=add(c ,1);}

7 // --------------mMod.c-------------

8 extern int c;

9 int main (void) // repeated step -wise counting from 0 to 10

10 {while (1){ step (); if(c==10){c=0;}}}

Fig. 1. Code of c-files mod.c. and mMod.c.

A C-program is the resulting binary from a successful compilation of a set
of C-modules. For example, a successful compilation of mod and mMod, shown in
Fig. 1, is a C-program. The set of C-modules of which the C-program is a com-
pilation of, is typically structured into packages and layers (see e.g. AUTOSAR
model [2] or Open Systems Interconnection (OSI)-layer model [14]) that encap-
sulate certain functionalities/services as part of the SW.

For example, Fig. 2 shows a structure of a C-program executing on an Electric
Control Unit (ECU) in a vehicle. The C-program consists of an application, a
middleware, and a basic SW layer that are further structured into packages of
C-modules (each shown as a white rectangles with a folded corner) according to
e.g. vehicle features (Braking, fuel estimation, etc.), communication (Controller
Area Network (CAN), I/O, etc.), or Operating System (OS) services and HW
interaction (Scheduling, Analogue to Digital Conversion (ADC) etc.).

The structure of the C-program provides an overview and captures the over-
all dependencies of services [20] between different parts of the C-program at
different levels. For example, the application layer relies on the middleware layer
to provide values that correspond to CAN-signals or sensor readings and the
middleware layer expects that basic SW layer delivers voltage values of the pins
of the ECU. Thus, as shown in [20,28], organizing the specifications in parallel to
the SW structure, provides a straightforward way of capturing the dependencies
of services in the specifications.

A structure of a C-program will be considered to be a rooted tree where:

– the root node in the structure represents the C-program;
– each C-module that is compiled with other C-modules into the C-program,

is represented by a node in the tree;
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Fig. 2. A structure of a C-program executing on an ECU.

– the children of each node representing a C-module, represent the C-functions
contained in the C-module and these constitute the leaf nodes in the C-
program structure; and

– the children of each non-leaf node that does not represent a C-module, rep-
resent the packages/layers/C-modules that either the C-program or a pack-
age/layer, consists of.

Given a C-program structure, the term structure entity will be used to de-
note any C-function/C-module/package/layer/C-program that is represented by
a node in the C-program structure. Furthermore, for convenience, the nodes in a
C-program structure will be referred to as structure entities themselves, despite
the fact that the nodes are only representations of structure entities. Terminol-
ogy from graph theory [8] will be borrowed to describe positions of structure
entities, relative to each other.

3 General Compositional Framework

This section summarizes relevant concepts originating from the compositional
framework in [3,24] where specifications are expressed as contracts [3,4,7,19,24].
Specifically, the concepts presented in this section are based on a generaliza-
tion [27, 28] of [3, 24]. The generalization is chosen over the original work since
the concept of an architecture, which is an essential concept in the present paper,
is more explicit in [27,28] than in [3,24]. In contrast to the framework in [27,28]
where the number of ways to model a C-program is practically infinite, Sec. 4
will present a unique mapping from a C-program to an architecture model based
on a refinement of [27,28].

Given a set of variables X = {x1, . . . , xN}, let vxi
denote a value of xi.

Consider a set υX,t = (vxi
)xi∈X , called a value set, labeled with a time-point t

in a given time-window T and ordered according to a total ordering on a global
set of variables. A run for X, denoted ωX , is an ordered set consisting of a value
set υX,t for each t ∈ T , where ωX is ordered such that υX,t < υX,t′ , if t < t′ ∈ T .

An assertion W over X is a possibly empty set of runs forX. The projection of
W onto a set of variables X ′ ⊆ X, denoted projX′(W), is the assertion obtained
by removing the value of each variable x /∈ X ′ from each value set in each run
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in W. Given a set of variables X ′′ ⊇ X, let p̂rojX′′(W) denote the assertion
obtained by extending each run in W with all possible runs for X ′′ \ X, i.e.

p̂rojX′′(W) = {ωX′′ |projX({ωX′′}) ∈W}. In the following, let Σ be a universal

set of variables and WΣ denote p̂rojΣ(W).
An element is a pair E = (X,B) consisting of: a set of variables X, called the

interface of E and where each x ∈ X is called a port variable; and an assertion B
over X, called the behavior of E. An element is an abstract concept that can be
refined to model any part in general, such as a SW, hardware, or physical part,
as well as logical and functional design parts, e.g. as a SysML block [10] or as a
Heterogeneous Rich Component (HRC) [15].

3.1 Architecture

A set of elements can be organized into a hierarchy of elements called an archi-
tecture that models the structural relations between parts and where sharing of
port variables between element interfaces models interaction points between the
parts. Formally, in accordance with [27, 28], an architecture is a set of elements
organized into a rooted tree, such that:

(a) for any non-leaf node E = (X,B), with children {(Xi,Bi)}Ni=1, it holds that

B = projX(
⋂N
i=1 B

Σ
i ) and X ⊆ ⋃N

i=1Xi; and
(b) if there is a child E′ = (X ′,B′) and a non-descendent E′′ = (X ′′,B′′) of

E = (X,B), such that x ∈ X ′ and x ∈ X ′′, then it holds that x ∈ X.

The environment of an element E in an architecture, is the set of elements
{Ej}Mi=1 such that Ej is either a sibling or a sibling of a proper ancestor of E.

As expressed in part (a) of the definition, the individual behaviors of the chil-
dren of an element E is combined and abstracted by restricting their intersection
to the interface of E using projection. Note that since the individual behaviors
might be over dissimilar sets of variables, prior to using the intersection opera-
tor, the behavior of each child is transformed into an assertion over the universal
set of variables Σ, using the operator p̂roj. This is also done in general when
comparing or combining assertions with set-theoretic operations and relations.
Part (b) of the definition expresses that if a variable x is part of the interface
of both a child of an element E and an element in the environment of E, then x
must also be part of the interface of E.

To get a grasp of what an architecture is, as well as to give a preview of the
architecture modeling approach that will be presented in Sec. 4, Fig. 3a shows an
architecture that models a structure as shown in Fig. 3b of a C-program count10

containing the C-modules mod.c and mMod.c shown in Fig. 1. In Fig. 3a, the
rectangles filled with gray and the boxes on their edges represent the elements
in the architecture and their port variables, respectively, and where boxes are
connected with a line or present on several edges of rectangles if they represent
a shared port variable. The fact that a rectangle representing an element E′
is within another rectangle representing an element E, represents that E′ is a
proper descendant of E.
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Fig. 3. In a), an architecture is shown modeling the structure of count10 shown in b).

The elements Ecount10, Emod, EmMod, Estep, Eadd, Emain model count10,
mod, mMod, step, add, and main, respectively. The elements are actually refined
types of elements called components that will be formally introduced in Sec. 4.1
and that have interfaces modeling constructs such as C-function prototypes and
C-variables. The behaviors of EMmod and EMmMod model properties of the memory.
The specifics regarding the mapping of count10 in Fig. 3b to the architecture
shown in Fig. 3a, as well as general principles of mapping a C-program structure
to an architecture, will be presented in Sec. 4.2 and Sec. 4.3, respectively.

The next section will show how the framework [27, 28] supports specifying
and structuring contracts in parallel to an architecture to allow compositional
verification. The support is given for an architecture in general, which means the
same support is provided for an architecture model of a C-program where the
model is obtained by following the mapping principles that will be presented in
Sec. 4.

3.2 Compositional Verification

A specification for an element E = (X,B) is expressed as a contract, which
is a pair (A = {A1, . . . ,AN},G) where each Ai and G are assertions called an
assumption and the guarantee, respectively. The guarantee expresses an intended
property under the responsibility of the element, given any architecture where
the environment of the element fulfills the assumptions. The element E satisfies
the contract if AΣ1 ∩ . . . ∩ AΣN ∩ BΣ ⊆ GΣ .

Consider that a contract ({A1, . . . ,AN},G) is expressed for each element E
in an architecture. The intent is that there are guarantees Gi,1, . . . , Gi,Ni

of
other contracts in the environment of E for each assumption Ai, as well as
guarantees G1, . . . , GM of contracts for elements that are children of E, such
that GΣi,1 ∩ . . . ∩ GΣi,Ni

⊆ AΣi holds for each i and GΣ1 ∩ . . . ∩ GΣM ⊆ GΣ .
In accordance with [27, 28], a Directed Acyclic Graph (DAG) is assumed

to be created where the nodes in the graph represent the assumptions and the
guarantees of the contracts and where the edges represent the intended relations.
Ignoring a few technicalities that are presented in depth in [27], given that all the
intended relations represented by the edges in the DAG hold, it can be shown
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that the root element satisfies its contract, if the leaf elements in the architecture
satisfy their contracts. Thus, allowing compositional verification.

4 Architecture Modeling of Sequential C-Programs

This section presents the proposed formal approach for architectural modeling of
C-programs intended for sequential execution, i.e. with a single stack. As argued
in Sec. 1, such an approach is needed to support compositional verification of
C-programs, as well as to support their design and management in general. The
architecture model is complemented with a graphical representation for practical
application.

This is done by first formally introducing a refined type of element called
a component where a component models any type of structure entity of a C-
program structure as described in Sec. 2. Similar to [25], the behavior of a
component is specified given a time-window where each time-point models an
execution state of the C-program from the moment when a C-function in the C-
program is either called or returned to, up until and including the moment when
the C-function either calls another C-function or it returns. The first time-step
in the time-window models an invocation of the C-function main and the last
time-step models the return of the C-function main.

In accordance with Sec. 3, it is then shown how structure entities in a C-
program structure can be mapped to components in an architecture that models
the structure of the C-program in a context of a HW platform consisting of a
processor, memory, and a set of I/O-devices. The root element of the architecture
is a component with a behavior that models the execution of the C-program on
HW consisting of the processor and the memory. The interface of this component
models interaction points with the I/O-devices.

4.1 Function Interfaces and Components

Prior to introducing the definition of a component, the concept of function in-
terfaces modeling C-function prototypes is introduced. A function interface F
is an ordered set of variables (f, (x1, . . . , xN )). The variable f is a pair (fs, fr)
of variables where fr models the return value of the C-function. The variable fs
takes values from {0, 1, 2} and models the execution state of the C-function that
the function interface models the prototype for. The values 0, 1 and 2 model
that the C-function is not on the stack, that it is on the stack and executing,
and that it is on the stack but not executing, respectively.

Each variable xi models an argument where the identifiers of x1, . . . , xN
are mapped to the identifiers of the formal parameters of the C-function, e.g.
a function interface (fadd, (a, b))) models the prototype of the C-function add

shown in Fig. 1. The value domain of each variable xi corresponds to the data
type of its mapped formal parameter, except that the value domain of xi also
includes a value nil that models that no data is currently passed to the C-
function. Variables modeling arguments that are addresses or values of structs,

177



have value domains that include variable identifiers and nested ordered sets of
values, respectively. The definition of a component now follows.

A component is an element E = (X,B) where X is partitioned into sets
XF

1 , . . . , X
F
N and X ′, such that:

– each set XF
i is organized as a function interface Fi labeled as either internal

or external of E; and
– each port variable in X ′ is either labeled as internal or external of E.

The behavior B models the properties imposed by a structure entity on non-
descendent C-modules of the structure entity, as well as on HW, considering its
constraints on the C-functions modeled by F1, . . . ,FN and C-variables modeled
by port variables in X ′. Each x ∈ X ′ has a value domain that corresponds to
the data type of the C-variable that x models. If x models a C-variable that is
not persistent in memory, then the value domain of x also includes a nil value,
modeling the fact that the C-variable does not exist on the stack.

For example, consider the component Eadd = (Xadd,Badd) that is shown in
Fig. 3a and that models add shown in Fig. 1, as well as the structure of the C-
program count10 as shown in Fig. 3b in a context of a HW platform consisting
solely of a processor and memory. The entire interface Xadd is organized as a
function interface (fadd, (a, b)) modeling the prototype of add. In general, if a
subset of a component interface is organized as a function interface F modeling
the prototype of a descendent of a structure entity (including itself), then F
is labeled as internal of the component modeling the structure entity. Hence,
the function interface (fadd, (a, b)) is labeled as internal of Eadd. In this case,
since Eadd models a C-function, i.e. add, it means that (fadd, (a, b)) models the
prototype of add. The C-variable s is not modeled as a port variable since s is
not read or written to by either step, main, or an I/O-device.

4.2 Representing and Modeling a C-program Structure

This section introduces principles for architecture modeling of a C-program
structure, as well as how it can be represented, by mapping the structure of
the C-program count10 shown in Fig. 3b to the architecture shown in Fig. 3a.

Mapping C-functions to Leaf Components In Fig. 3a, the boxes repre-
senting the port variables that constitute the function interface (fadd, (a, b)) as
previously introduced, are enclosed in brackets. The fact that (fadd, (a, b)) is la-
beled as internal of Eadd is captured by a hollow circle and triangles attached to
an edge of each of the boxes representing fadd, as well as a and b, respectively
where the edges are within the rectangle that represents Eadd. The hat on the
hollow circle represents that fadd is not of the type void.

Regarding Estep, the subset Xadd of Xstep is organized as the function inter-
face (fadd, (a, b)) labeled as external of Estep. This models the fact that step calls
add in an execution path of the C-program. Furthermore, the set {fstep} ⊂ Xstep

is organized as a function interface (fstep, ()) modeling the prototype of step
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where (fstep, ()) is labeled as internal of Estep. Since step is of type void, no hat
is placed on the hollow circle attached to the box representing fstep.

The port variable c models the counter in the code shown in Fig. 1. The
counter is read and written to by both step and main and is, therefore, a port
variable of both Estep and Emain. Since the counter is not initialized in either
step or main, the port variable c is labeled as external of both Estep and Emain.

The prototype of main is modeled as a function interface (fmain, ()). As pre-
viously indicated, (fmain, ()) is labeled as internal of Emain as shown in Fig. 3a
since (fmain, ()) models the prototype of main and Emain models main. Consid-
ering that main calls step, (fstep, ()) is labeled as external of Emain.

Specifying Behaviors and Contracts Using LTSs As previously presented,
behaviors of components are defined in the general form of assertions, which can,
however, be specified using more concrete formalisms. Specifically, this section
shows how behaviors, and also contracts, can be specified as LTSs. Technical
details are presented in the end of this section.

In Fig. 4a, an example is shown on how the behavior of the component
Estep = (Xstep,Bstep) can be specified as an LTS such that it models the static
and dynamic properties imposed by step on the rest of the code of the C-
program and on HW. A label on a state s is a constraint specifying a set of
values of the port variables in Xstep where all values of a port variable are in
the set if it is not constrained. Each transition (s, s′) corresponds to a time-step
and a label on (s, s′) specifies a relation on the labels of the two states where a
primed and non-primed version x′ of a port variable x refer to the new and old
values of x, respectively.

The initial state s0 models that step is not on the call stack. The transition
(s0, s1) models an invocation of step. The transition (s1, s2) models a function
call from step to add where the value of c and 1 are passed as arguments a and
b. The transition (s2, s3) models a return of add to step where the value of c is
assigned to be equal to fadd,r modeling the return value of add. The transition
(s3, s0) models a return of step.

In general, the behavior of a component modeling a C-function that is not
of type void, will constrain the port variable modeling the return value of the
C-function to only have a value that is not equal to nil for each time-point that
models an execution state where the C-function has just returned. For example,
fadd,r is not equal to nil in state s3, but will be constrained to be nil at state s2
by Badd. However, since step is of type void, the port variable fstep,r modeling
the return value of step, is nil for each run and time-step as shown in Fig. 4a.

Furthermore, the behavior of a component modeling a C-function with formal
parameters, will constrain the port variables modeling each argument to only
have a value that is not equal to nil for each time-point that models an execution
state where the C-function has just been called. For example, the port variables
a and b have values that are not nil in the state s2, but will be constrained to
be nil at state s3 by Badd.
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Consider an informal requirement on step: ”the value of the counter when the
C-function returns, shall be equal to a step increase of the value of the counter
at the time when the C-function is called.” As can be seen in Fig. 1, for step to
be able to guarantee this requirement, it requires functionality provided by the
C-function add, i.e. that ”add returns the sum of its arguments to its caller”.

start

s0 :
fstep,s = 0∧
fstep,r = nil

s1 :
fstep,s = 1∧
fstep,r = nil

s2 :
fstep,s = 2∧
fadd,s = 1∧
fstep,r = nil

s3 :
fstep,s = 1∧
fadd,s = 0∧
fstep,r = nil

a′ = c∧
b′ = 1

c′ = f ′add,r

(a)

fstep,s ≥ 1

fstep,s = 0

start c′ = xc + 1x′c = c′

x′c = xc

(b)

start

s0 :
fstep,s = 0

s1 :
fstep,s = 1

s2 :
fstep,s = 2∧
fadd,s = 1

s3 :
fstep,s = 1∧
fadd,s = 0

c′ = c

f ′add,r = a+ b

c′ = c

(c)

start
c = 0

fstep,s = 0 fstep,s = 1
fstep,s = 2∧
fadd,s = 1

fstep,s = 1∧
fadd,s = 0 c′ = c

c′ = c

(d)

Fig. 4. In a), the behavior of Estep is shown, specified as an LTS. In b) and c), the
guarantee Gstep and the intersection of the assumptions in Astep of a contract for Estep
are shown, respectively. In d), the behavior of EMmod is shown, specified as an LTS

Considering the interface of Estep, a contract (Astep,Gstep) that expresses the
informal requirement and the required functionality can be formulated as shown
in Fig. 4c and Fig. 4b. The guarantee Gstep is equal to the projection of the
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assertion specified by the LTS in Fig. 4b onto {fstep,s, c}. Hence, the variable
xc is simply used as a support variable in order to specify that the value of c
directly after a time-step where the value of fstep,s switches from 1 to 0, shall
be equal to a step increase of the value of c at the time-point after the latest
time-step where the value of fstep,s switched from 0 to 1.

In Fig. 4c, the intersection of the assumptions in Astep is shown where the
intersection is specified as an LTS. The LTS captures the functionality that step
requires from add by having the label on the transition (s2, s3) modeling a return
of add to step, constrain the port variable fadd,r to be equal to the sum of the
old values of the port variables a and b. Additionally, the LTS in Fig. 4c specifies
that the port variable c is to remain constant in states modeling the execution
of step, but where step does not write to the counter.

Consider the constraint specified in Fig. 4c to hold the counter constant if
step is executing, but where step does not write to the counter, as well as the
fact that the counter is initialized to 0 as shown in Fig. 1. Notably, as shown
in Fig. 4a, neither of these constraints are captured in the behavior of Estep.
The reason why the latter constraint is not captured is because c is initialized
in mod rather than in step. The former constraint is not captured since it is
a property of the memory, rather than of step. Such constraints are instead
captured separately in the behaviors of the elements EMmod and EMmMod in Fig. 3.

As an example of how a behavior modeling properties of the memory can
be captured, consider the element EMmod = (XM

mod,B
M
mod). The interface XM

mod =
{fadd, fstep, c}, i.e. XM

mod contains the port variable f of each function interface
(f, (x1, . . . , xM )) labeled as internal of siblings of EMstep, as well as each port

variable labeled as external or internal of siblings of EMstep. The behavior BMmod
is shown in Fig. 4d and constrains the port variable c to be constant in states
modeling the execution of add and step where neither of the C-functions write
to the counter. The behavior also models the initialization of the counter.

The elements modeling constraints on the memory are necessary in order for
the behavior of the component modeling the C-program to capture the execution
of the C-program on HW consisting of a processor and memory. Hence, if only
the structure of a C-program is of interest, elements such as EMmod and EMmMod

can be removed from a representation such as the one shown in Fig. 3.

In the examples shown in Fig. 4, the exact mapping between assertions and
LTSs was not explained in detail. The details of such a mapping follow. Each
assertion is specified as an LTS (S, I ⊆ S,R,LS , LR) where each state s ∈ S has
a label LS(s) equal to a set of value sets and each transition (s, s′) ∈ R ⊆ S ×S
has a label LR((s, s′)) ⊆ LS(s)×LS(s′). For a given set of variables X and time-
window T = (t0, t1, t2, . . .), the assertion specified as an LTS, consists of each
run (υX,t0 , υX,t1 , υX,t2 , . . . , ) where there exists a sequence (s0 ∈ I, s1, s2, . . .)
such that for each i ≥ 0, it holds that (si, si+1) ∈ R and (υX,ti , υX,ti+1

) ∈
LR((si, si+1)). Note that instead of declaring each value set in a label LS(s), the
label can be specified by a constraint. Similarly, instead of declaring the set of
pairs of value sets in a label LR((s, s′)), the label can be specified by a constraint
that restricts the set LS(s)× LS(s′) to the set LR((s, s′)).
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Mapping Non-leaf Structure Entities to Components Consider the com-
ponents Emod = (Xmod,Bmod) and EmMod = (XmMod,BmMod) modeling the
respective C-modules mod and mMod shown in Fig. 3. The C-function add is nei-
ther the main C-function nor an Interrupt Service Routine (ISR), nor is it called
by any non-descendent C-function of mod. Therefore, the port variables fadd, a,
and b are not part of Xmod. Since step is both a descendent C-function of mod

and called by the non-descendent and descendent C-function main of mod and
mMod, respectively, {fstep} is organized as the function interface (fstep, ()) labeled
as internal and external of Emod and EmMod, respectively. Due to the fact that
main is the main C-function of the C-program and a descendent of mMod, the
function interface (fmain, ()) is labeled as internal of EmMod. The C-function
main is not called by a descendent C-function of mod, and, hence fmain /∈ Xmod.

Furthermore, since the counter is read and written to by both the non-
descendent and descendent C-functions main and step of mod, respectively, the
port variable c is part of both Xmod and XmMod. Considering that the counter
is initialized in mod, the port variable c is labeled as internal and external of
Emod and EmMod, respectively. The fact that c is labeled as internal of Emod is
represented by attaching a hollow diamond to an edge of the box representing c
where the edge is within the rectangle representing Emod.

Regarding the component Ecount10 = (Xcount10,Bcount10) modeling the C-
program count10, since step is neither the main C-function nor an ISR, fstep is
not part of Xcount10. Due to same reasons, the port variable fmain is, however,
part of Xcount10 and is organized as the function interface (fmain, ()) labeled as
internal of Ecount10. The counter is not read or written to by an I/O-device and,
hence, c is not part of Xcount10.

4.3 Modeling C-Program Structures as Architectures

Consider a C-program structure in a context of a HW platform. This section
generalizes principles introduced in Sec. 4.2 into the general approach of how
structure entities can be mapped to components in an architecture modeling the
C-program structure.

The leaf components in the architecture, model the C-functions while the root
component models the C-program itself. The set {Ei = (Xi,Bi)}Ni=1 of children
of a component E = (X,B) modeling a structure entity consists of components
modeling each child of the structure entity, as well as a leaf element modeling
properties of the memory if there exists a port variable x of a component Ei
where x models a C-variable and is either: not part of each interface Xi; or
not part of the interface X and E is not the root component. Considering the
architecture shown in Fig. 3, that is why the root component Ecount10 does not
have a child that models properties of the memory.

The interface X of the component E is partitioned into sets XF
1 , . . . , X

F
M and

X ′ where XF
1 , . . . , X

F
M are organized into function interfaces F1, . . . ,FM .

C-Variables Port variables inX ′ model each C-variable that is neither a pointer
nor compound data structure, i.e. arrays and structs, and where the C-variable
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is either read or written to (including initialization), in an execution path of the
C-program both by a descendent C-function of the structure entity and by either
a non-descendent C-function of the structure entity or an I/O-device. Note that
this assumes that the C-program does not read or write to addresses that are
not associated with a C-variable. A trivial extension to this case is to also model
addresses as port variables.

If a port variable x ∈ X ′ models a C-variable that is initialized in either a
descendent C-function or a C-module of the structure entity, then x is labeled
as internal of E. Otherwise, the port variable x is labeled as external of E. In
the architecture, two different port variables do not model the same C-variable.

C-Functions, Interrupts, and Recursion Function interfaces F1, . . . ,FM
model:

– the prototype of each descendent C-function of the structure entity where
either E models the C-function, the C-function is an ISR or the C-function
main of the C-program, or a non-descendent C-function of the structure
entity calls the C-function in an execution path of the C-program; and

– the prototype of each non-descendent C-function of the structure entity
where a descendent C-function of the structure entity calls the C-function
in an execution path of the C-program.

If Fj models the prototype of a descendent C-function of the structure entity,
then Fj is labeled as internal of the component. Otherwise, Fj is labeled as
external of the component.

Interrupts that are predicted to preempt certain C-functions and where the
triggered ISRs do not call other C-functions, can be modeled by a port variable
fISR,s modeling the execution state of an ISR, first switching from 0 to 1 and
then back to 0, simultaneously as a port variable fs modeling the execution state
of the interrupted C-function, switching from 1 to 2 and then back to 1. Since the
interrupt is predicted, the behavior of the component modeling the C-function
can be specified such that fs switches simultaneously as fISR,s despite fISR,s
not necessarily being part of the interface of the component.

To capture other forms of interrupts where ISRs also calls other C-functions,
each port variable fISR,s modeling the execution state of an ISR can be included
in the interface of each leaf component in the architecture. Hence, the behavior
of each component modeling a C-function foo, can be specified such that in any
time-point modeling an execution of foo, if a port variable fISR,s switches from
0 to 1 in the next time-step, then the port variable ffoo,s modeling the execution
state of foo switches from 1 to 2 in the same time-step. The variable ffoo,s can
then be specified to be equal to 2 until fISR,s switches back to 0.

To model a C-program where indirect recursion is used, i.e. when a C-function
calls another C-function on the stack, two separate components need to model
the same C-function. If indirect recursion is not used, only one component is
needed to model a C-function. This includes direct recursion, i.e. when a C-
function calls itself, which can be captured in the behavior of a single component.
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Compound Data Structures If a component has port variables that model
each C-variable in a compound data structure, then these port variables are or-
ganized into an ordered set, which can be represented by enclosing these port
variables in brackets similar to how function interfaces are represented. Hier-
archies of compound data structures are organized as nested ordered sets and
represented accordingly.

Pointers As previously discussed, C-variables that are pointers, are not modeled
as port variables of a component. Rather, if there exists an execution path of the
C-program where the C-function either reads or writes to a C-variable indirectly
through the use of a pointer, then the C-variable to which the pointer ultimately
points to, is modeled as a port variable of the component. This also holds true for
C-function pointers, i.e. if a C-function foo calls another C-function foo’ indi-
rectly through a function pointer, then a function interface modeling a prototype
of foo’, will be labeled as external of a component modeling foo.

Properties of Memory If an element (XM ,BM ), modeling properties of the
memory, has a parent that models a C-module, then XM contains each port
variable f of each function interface (f, (x1, . . . , xM )) labeled as internal of its
siblings, as well as each variable x labeled as external or internal of its sib-
lings. The behavior BM constrains each port variable x to be constant in states
modeling the execution of descendent C-functions of the C-module where the
C-functions do not write to the C-variable modeled by x. The behavior BM also
models the initialization constraints on C-variables that are initialized in the
C-module. An example of such an element was previously shown in Fig. 4d.

In the case where the parent of (XM ,BM ) is not a C-module, the interface
XM contains each port variable f of each function interface (f, (x1, . . . , xM ))
labeled as internal of its siblings, as well as each port variable x labeled as
external or internal of its siblings where x is either not in the interface of the
parent component of the element or not in the interface of each sibling component
of the element. In case of the former, the behavior B constrains x to be constant
during states where none of the descendent C-functions of the structure entity
modeled by the parent component of the element, are executing. In case of the
latter, the behavior B constrains x to be constant during states modeling the
execution of non-descendent C-functions of structure entities modeled by each
sibling component of the element where the interface of the sibling component
does not contain x.

5 Industrial Case study - Reading the Fuel Sensor

This section presents a case study where a subset of the structure of a real
industrial C-program is modeled as an architecture as shown in Fig. 5 using
the concepts described in Sec. 4. The modeled subset is part of a C-program
executing on an ECU in a Scania truck and is the part of the C-program that
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manages the transformation from the digitally converted voltage value at a pin
connected to a fuel sensor, to a C-variable storing an estimated fuel level value.

To save space, components and port variables will in the following be re-
ferred to as structure entities and C-variables/arguments. Elements modeling
properties of the memory are omitted from the representation shown in Fig. 5.

Eexec
Emain

ffuel10
ESW

Eread sigDB sigDB
sig′ valfwrite

Efuel10

Ewrite

ffuel10
fanin10

fmain

fanin10

fread sig

Eanin10

fgetIO pin
EgetIO

Eadcc EBIOS

EMIDDEanin

EsigDB

EAPPLEfuel

adcRfifo

Fig. 5. An architecture modeling a subset of a structure of a C-program in an ECU.

The C-program ESW contains an application layer EAPPL, a middleware
layer EMIDD, a basic SW layer EBIOS , and a C-module EsigDB that serves as
a communication interface between EAPPL and EMIDD. The main C-function
Emain in the C-module Eexec calls the C-functions Eanin10 and Efuel10 in that
order. The C-function Eanin10 in the C-module Eanin calls the C-function EgetIO
in the C-module Eadcc, passing an integer as an argument pin that maps to a
specific pin on the ECU. If pin maps to the pin connected to the fuel sensor,
then EgetIO will return the average of the values of the C-variables in the array
adcRfifo. Each C-variable in the array maps to a specific part of the registry of
an ADC where that part of the registry stores a sampled voltage value of the pin
connected to the fuel sensor. The initialization and termination of the sampling,
which is done by deactivating and activating Direct Memory Access Channels
(DMACs), is not considered due to space restrictions.

After EgetIO returns, the C-function Eanin10 proceeds to call the C-function
Ewrite with the arguments sig′ and val where sig′ is an enum value corresponding
to an ID of a general I/O and where val is the corresponding value of the
I/O. If sig′ = fuelSensorLevel, then val corresponds to an estimation of the
fuel level acquired by transforming the averaged voltage value of the pin of the
fuel sensor. The estimated fuel level is stored in a specific position in an array
sigDB where the position maps to the ID fuelSensorLevel. The C-function
Efuel10 in the C-module Efuel calls the C-function Eread with the argument
sig = fuelSensorLevel. The C-function fetches the estimated fuel level from
the array and returns the value to Efuel10. The C-function fuel10 relies on the
estimated fuel level to calculate the fuel volume in the tank.
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6 Conclusion

Compositional verification provides a means to manage the development of com-
plex C-programs, but in order to support compositional verification in practice,
an architecture model of a C-program is needed. Such support is paramount
for the embedded domain, in general, and the automotive domain, in partic-
ular, since compositional verification is an essential concept in the automotive
standard ISO 26262. Due to the lack of such much needed support in current
approaches [1, 6, 9–12, 23, 25], the present paper has introduced a general and
formal approach for architecture modeling of sequential C-programs.

The presented approach was shown to provide a foundation for decomposing
specifications in parallel to a hierarchy of components that model a C-program
structure as introduced by engineers. The well-defined component interfaces were
shown to provide support for expressing specifications as contracts. Although
further practical validation is needed, the presented case study indicates that
the approach is fully capable of modeling C-programs in an industrial context.
Thus, providing practical support for compositional verification.

In addition to providing practical support for compositional verification, an
architecture model can serve as a high-level description of a C-program, allowing
developers to understand, assess, and manage the C-program without having
to understand the intricate complexity of the code implementation. Given a C-
program, the presented approach provides a foundation for automatic generation
of an architecture model from code using e.g. architecture recovery [21], ensuring
a high-level description that is consistent with the code. The architecture model
can then also be used to verify the consistency of manually implemented models,
e.g. UML and SysML models, if they are mapped to the architecture model.
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Abstract. Cloud computing is now an omnipresent paradigm in mod-
ern programming. Cloud applications usually consist of several software
components deployed on remote virtual machines. Managing such ap-
plications is a challenging problem because manual administration is
no longer realistic for these complex distributed systems. Thus, auto-
nomic computing is a promising solution for monitoring and updating
these applications automatically. This is achieved through the automa-
tion of administration functions and the use of control loops called au-
tonomic managers. An autonomic manager observes the environment,
detects changes, and reconfigures dynamically the application. Multiple
autonomic managers can be deployed in the same system and must make
consistent decisions. Using them without coordination may lead to in-
consistencies and error-prone situations. In this paper, we present our
approach for coordinating stateful autonomic managers, which relies on
a simple coordination language, new techniques for asynchronous con-
troller synthesis and Java code generation. We used our approach for
coordinating real-world cloud applications.

1 Introduction

Autonomic computing [16] is increasingly used to solve complex systems, since it
reduces human errors [18]. It has become popular especially in cloud applications
where the management is a crucial feature. Autonomic computing is based on
the use of autonomic managers [17]. An autonomic manager is built as a control
loop. It observes the application execution, ensures a continuous monitoring,
and reacts to events and changes by automatically reconfiguring the application.
The increasing complexity of cloud applications implies the use of various and
heterogeneous autonomic managers, such as self-healing and self-protecting [5],
with the objective to reconfigure automatically themselves.

When multiple autonomic managers monitor the same system, they should
take globally coherent decisions. Hence, a manager should be aware of decisions
of other managers before reacting. When it reacts without taking into account
decisions of other managers handling the same application, error-prone situa-
tions may occur (e.g., removing a server that will be needed). In order to avoid
performance degradation and system consistency problems, and also to limit
energy consumption it is necessary to coordinate all autonomic managers.
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In this paper, we present our approach, whose main goal is to synthesize a
controller that monitors and orchestrates the reconfiguration operations of the
involved managers. The controller also prevents a manager from violating global
objectives of the managers. All participants involved in the application interact
asynchronously with the controller and messages are stored/consumed into/from
FIFO buffers.

More precisely, an autonomic manager is described using a formal model,
namely a Labelled Transition System (LTS). We used reaction rules and regular
expressions to specify coordination requirements and interaction constraints. As
a consequence, each manager is not only able to manage its internal behaviour
but also its relationship with other autonomic managers, which is achieved in
accordance with the specification of the coordination requirements. As shown
in Figure 1, we propose controller synthesis techniques for asynchronously com-
municating managers. These techniques rely on an encoding of our inputs (LTS
models and coordination requirements) into the LNT process algebra [6]. LNT
is one of the input languages of the CADP toolbox [10], a state-of-the-art verifi-
cation toolbox for concurrent systems. CADP compilers and minimization tools
are particularly useful for generating a reduced LTS from the LNT specification.
The generated LTS corresponds to all possible executions of the controller. It is
worth noting that since we rely on formal techniques and tools, all the verifica-
tion techniques available in the CADP toolbox can be used for validating the
generated controller.

Once we have synthesized the controller LTS, Java code is generated using a
code generator we developed. This Java code is finally deployed and used for co-
ordinating real applications. We validated our approach on several variants of a
N-tier Web application involving several autonomic managers, such as self-sizing
or self-repair managers. We emphasize that our approach covers the whole devel-
opment process from expression of the requirements to the final implementation
and deployment of the solution.

Fig. 1. Overview of our approach
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The rest of this paper is structured as follows. In Section 2, we introduce our for-
mal model for autonomic managers, the coordination language, and our running
example (a multi-tier Web application). In Section 3, we present our synthesis
techniques that mainly rely on an encoding into process algebra and on LTS ma-
nipulations. Section 4 introduces the code generation techniques for obtaining
Java code from controller models. We discuss related work in Section 5 and we
conclude in Section 6.

2 Models

In this section, we first present the abstract model used to represent autonomic
managers. In a second step, we introduce reaction rules and regular expressions
for specifying how the involved managers are supposed to interact together.
Manager models and coordination expressions are used as input to our synthesis
techniques (Section 3). At the end of this section, we introduce a typical example
of distributed cloud application that we use as running example.

2.1 Autonomic Manager

Each autonomic manager is modelled as a Labelled Transition System, which is
defined as follows:

Definition 1. A Labelled Transition System (LTS) is a tuple defined as LTS =
(Q,A, T, q0) where Q is a finite set of states, A = A! ∪ A? is an alphabet parti-
tioned into a set of send and receive messages, T ⊆ Q×A×Q is the transition
relation, and q0 is the initial state.

We write m! for a send message m ∈ A! and m? for a receive message m ∈ A?. A

transition is represented as q
l−→ q′ ∈ T where l ∈ A. We assume that managers

are deterministic, which can be easily obtained using standard determinization
algorithms [15]. Given a set of manager LTSs (Qi, Ai, Ti, q

0
i ), we assume that

each message has a unique sender and a unique receiver: ∀i, j ∈ 1..n, i 6= j,
A!
i ∩A!

j = ∅ and A?
i ∩A?

j = ∅. Furthermore, each message is exchanged between

two different managers: A!
i ∩ A?

i = ∅ for all i. Uniqueness of messages can be
achieved via renaming.

2.2 Coordination Requirements

In order to coordinate multiple autonomic managers, we use reaction rules and
regular expressions with their basic operators (sequence, choice, iteration) to
describe the behaviour one expects from the controller. The generated controller
aims at orchestrating the execution of the managers. A reaction rule consists of a
set of receptions followed by a set of emissions. Basically, it expresses that when
the controller receives a set of messages from managers within a certain period
of time (left hand part), it must send all the messages specified in the second
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set (right hand part) once the period is expired. Note that the real period will
be chosen during the deployment phase and both sets of actions can be received
and emitted in any order.

Definition 2. Given a set of managers {M1, . . . ,Mn} with Mi = (Qi, Ai, Ti, q
0
i ),

a reaction rule R is defined as a1, ..., am → b1, ..., bp where aj ∈ A?
i and bk ∈ A!

i

for 1 6 j 6 m and 1 6 k 6 p.

The specification of the behaviour one expects from the controller is expressed
using a coordination expression.

Definition 3. A coordination expression C is a regular expression over reaction
rules R:

C ::= R | C1.C2 | C1 + C2 | C∗
where C1.C2 is a coordination expression C1 followed by C2, C1 +C2 is a choice
between C1 and C2, and C∗ is a repetition of C zero or several times.

It is worth noting that all participants, namely the autonomic managers
and the controller to be generated, communicate asynchronously using message
passing via FIFO buffers. Each participant is equipped with one input buffer.
Therefore, it consumes messages from its buffer and sends messages to the input
buffer of the message recipient. Once generated and added to the system, all
managers communicate through the controller, which means that the controller
acts as a centralized orchestrator for the whole system.

2.3 Running Example

Our running example is a JEE multi-tier application (Fig. 2) composed of an
Apache Web server, a set of replicated Tomcat servers, a MySQL proxy server,
and a set of replicated MySQL databases. The Apache server receives incoming
requests and distributes them to the replicated Tomcat servers. The Tomcat
servers access the database through the MySQL proxy server that distributes
fairly the SQL queries to a tier of replicated MySQL databases.

Fig. 2. A multi-tier application
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The autonomic manager architecture is based on the MAPE-K (Monitor Analyse
Plan Execute - Knowledge) reference model [16]. We describe this architecture
using several LTS models. First, we model the behaviour of the monitor, analyse,
and execute functions of the managers by what we call the application manager
(Fig. 3, right), which sends messages when a change occurs in the system and
receives messages indicating actual administrative changes to perform on the
application. As for the plan functions, we use two models called self-sizing and
self-repair managers, resp. The self-sizing manager (Fig. 3, middle) is in charge
of adapting dynamically the number of replicated servers by sending the mes-
sage add! (remove!, resp.) to the system when detecting an overload (underload,
resp.). The overload (underload, resp.) is detected when the average of the load
exceeds (is under, resp.) a maximum (minimum, resp.) threshold. We associate
one instance of the self-sizing manager to the Tomcat servers and another in-
stance to the MySQL databases. The self-repair manager (Fig. 3, left) asks the
system to repair a failure by creating a new instance of the failed server. We
have four instances of the self-repair manager, one per tier.

Fig. 3. (left) Self-repair manager LTS, (middle) Self-sizing manager LTS, (right) Ap-
plication manager LTS

The absence of coordination between these managers may lead the whole
system to some undesired situation such as adding two new servers whereas one
was enough as a result of a server failure. More precisely, when the self-repair
manager repairs a failure, the other replicated servers receive more requests than
before the failure, which causes an overload and therefore the addition of another
(unnecessary) server by the self-sizing manager.

We present below an excerpt of the requirements for the controller we want to
generate for our running example. These rules ensure that all managers globally
satisfy the coordination objectives. Each line presents the actions that can be
received by the controller in a period T (left parts of reactions rules). At the
end of each period, if the received messages match the left part of one fireable
rule, it reacts by emitting the messages appearing in the right part of that rule.
All messages are prefixed by the manager name (app stands for the application
manager) and suffixed by the name of the tier to which is associated the manager.

( app_failure_apache? -> repair_failure_apache! (Ê)

+ app_overload_tomcat? -> sizing_overload_tomcat! (Ë)
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+ app_failure_apache?, app_underload_tomcat?-> repair_failure_apache!(Ì)

+ app_failure_tomcat?, app_overload_tomcat? -> repair_failure_tomcat!(Í)

+ ... ) *

We distinguish two kinds of rules: (1) those where a unique message appears
in the left part of the reaction rule (see, e.g., Ê, Ë). In that case, the correspond-
ing controller immediately transfers that message to the manager; (2) those en-
coding the coordination we want to impose on managers, e.g., rule Í permits to
generate a controller that can avoid to add two Tomcat servers by forwarding
only one of the two received messages on a same period of time. Last, since there
is no specific order between all these rules, we use a simple regular expression
where all rules can be fired at any time (combination of + and * operators).

3 Synthesis

In this section, we present our asynchronous controller synthesis techniques,
which rely on an encoding of our models and of the coordination requirements
into the LNT specification language. From this LNT specification, we can gener-
ate the corresponding LTS model using CADP compilers, hiding, and reduction
techniques. Validation of the generated controller is also possible using CADP
verification tools. This section ends with an illustration of all these techniques on
our running example. All the steps presented in this section are fully automated
by a tool that we developed in Python. This tool generates the LNT code as well
as SVL scripts [10] that are used for invoking CADP exploration and reduction
tools, which finally results in the generation of the controller LTS.

3.1 Process Algebra Encoding

The backbone of our solution is an encoding of all managers and of the coordina-
tion requirements into the LNT process algebra. The choice of LNT is motivated
by several reasons. First, LNT is an expressive behavioural specification language
which has a user-friendly syntax and provides expressive operators. Second, LNT
is supported by CADP [10], a toolbox that contains optimized state space ex-
ploration techniques and verification tools. CADP tools allow to compile the
LNT specification into an LTS, which enumerates all the possible executions of
the corresponding specification. Third, CADP is a verification toolbox dedicated
to asynchronous systems consisting of concurrent processes interacting via mes-
sage passing. It provides many tools that can be used to make different kinds of
analysis, such as model checking.

The behavioural part of the LNT specification language consists of the fol-
lowing constructs: action with input/output parameters, assignment (:=), se-
quential composition (;), conditional structure (if), loop (loop), parallel com-
position (par), nondeterministic choice (select), and empty statement (null).
Each process defines an alphabet of actions, a list of typed parameters, and a
behaviour built using the aforementioned operators. Communication is carried
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out by rendezvous on actions with bidirectional transmission of multiple values.
The parallel composition explicitly declares the set of actions on which pro-
cesses must synchronize. If the processes evolve independently from one another
(interleaving), this set is empty.

In the rest of this section, we successively present the encoding into LNT of
the different parts of our system.

Autonomic Manager An LNT process is generated for each state in the man-
ager LTS. Each process is named using the state identifier. The alphabet of the
process contains the set of messages appearing on the LTS transitions. The be-
haviour of the process encodes all the transitions of the LTS going out from the
corresponding state. If there is no such transition, the body of the process is
the null statement. If there is a single transition, the body of the process corre-
sponds to the message labelling this transition, followed by a call to the process
encoding the target state of the transition. If there is more than one transition,

we use the select operator. Let us assume that two transitions q
l−→ q’, q

l′−→
q’’ ∈ T have the same source state q. The behaviour of the process encoding q

in LNT is select l; q’[...] [] l’; q’’ end select, where the LNT operator
select encodes a nondeterministic choice between l and l’.

Since a message name can be used in different autonomic manager LTSs,
each message is prefixed with the manager name to avoid further name clashes.
We encode emitted messages (received messages, resp.) with a EM ( REC, resp.)
suffix. These suffixes are necessary because LNT symbols ! and ? are used for the
data transfer only. As an example, m1 ∈ A! is encoded as m1 EM , and m2 ∈ A?

is encoded as m2 REC.

Coordination Requirements The coordination requirements specified using
reaction rules and regular expressions correspond to an abstract version of the
controller to be generated. These requirements are encoded into an LNT process
called coordination. The process alphabet is composed of all received and emitted
messages appearing in the reaction rules. The body of this process encodes the
regular expression of reaction rules. Each reaction rule is translated to LNT
separating both sides of the rule using the sequential composition construct (;).
In order to make explicit in the controller LTS the logical interval of time that will
be chosen in the implementation step and during which the controller receives
messages, the left hand part of the reaction rule starts with an action TBEGIN

and ends with an action TEND. The left hand part is translated using the par

operator without synchronization since all messages can be received in any order.
After execution of the TEND action, the right hand part of the reaction rule is
translated using the parallel composition too, to express that all emissions can be
sent in any order. As far as the regular expression is concerned, a sequence (.) of
rules is encoded using the sequential composition, a choice (+) between several
rules is translated using the select construct and an iteration (∗) is encoded
using the loop operator.
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Architecture In this section, we present how all participants (managers and
coordination expression) are composed together. The communication between
them is achieved asynchronously. The coordination expression represents an ab-
stract description of the future controller, and all messages must go through this
controller, which acts as a centralized orchestrator. Each participant is equipped
with an input FIFO buffer. When a participant wants to read a message, it reads
the oldest message in its buffer. When a participant sends a message to another
participant, it sends the message to the input buffer of that participant. LNT
functions are used to describe basic operations on these buffers (e.g., adding and
retrieving messages). We present below, an example of function that removes a
message from a FIFO buffer (i.e., from the beginning).

function remove_MSG (q: TBUFFER): TBUFFER is
case q in

var hd: TMessage, tl: TBUFFER in
nil -> return nil

| cons(hd,tl) -> return tl

end case
end function

It is worth noting that our synthesis techniques allow one to choose buffer
bounds. One can either decide to fix an arbitrary bound for buffers or to use
unbounded buffers. In the first case, the only constraint is that the same buffer
bound should be used when deploying the controller, otherwise unexpected be-
haviours and erroneous situations may occur. In the second case (unbounded
buffers), the risk is to attempt to generate a controller whose corresponding state
space is infinite [3]. As an intermediate solution, one can use the recent results
presented in [2] for identifying whether the interactions between managers with
unbounded buffers can be mimicked with bounded buffers. If this is the case, the
lower bound returned by these techniques is used as the minimum buffer bound
for both synthesis techniques and the deployment of the application.

A buffer in LNT is first encoded using an LNT list and classic operations on it.
Then, for the behavioural part, a buffer is encoded using a process with a buffer
data type as parameter. This process can receive messages from the other partic-
ipants, and can synchronize with its own participant when that one wants to read
a message. We generate a process encoding each couple (participant, buffer) that
corresponds to a parallel composition (par) of the participant with its buffer.
The synchronization set contains messages consumed by the participant from its
buffer.

Finally, the whole system (main process in LNT, see below) consists of the
parallel composition of all these couples. It is worth noting that since autonomic
managers communicate via the controller, they evolve independently from one
another and are therefore composed using the par operator without synchro-
nizations. In contrast, the couple (coordination, buffer) must synchronize with
all couples (manager, buffer) on all emissions from/to the managers, and this is
made explicit in the corresponding synchronization set of this parallel composi-
tion.
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process main [message1:any, ..., messagen:any] is
par messagep, ..., messagek in

couple_buffer_coordination [...]

||

par
couple_buffer_manager1 [...]

|| . . . ||

couple_buffer_managern [...]

end par
end par

end process

3.2 Compilation and Verification

Now that we have encoded our inputs (models and coordination requirements)
into LNT, we can use compilers to obtain the LTS corresponding to all be-
haviours of the LNT specification. In order to keep only the behaviour corre-
sponding to the most permissive controller [25], we need to hide message ex-
changes corresponding to consumptions of the managers from their buffers and
emissions from managers to the coordination expression buffer. All these mes-
sages are replaced by internal actions. We use minimization techniques available
in CADP for eliminating all internal actions, removing duplicated paths, and
determinizing the final LTS. Finally, we preserve only local emissions/receptions
from the coordination expression point of view (messages shown in the dashed
grey rectangle in Fig. 4). Transitions figuring in the final LTS are labelled with
the messages corresponding to the process alphabet of the couple (coordination,
buffer).

Fig. 4. Exchange of messages between the coordination expression and the managers

Last but not least, let us stress that, since the writing of the coordination
expression is achieved manually by a designer, this step of our approach may
lead to an error-prone expression. However, we can take advantage of the en-
coding into LNT to check either the controller LTS (and thus the coordination
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expression) or the LTS corresponding to the composition of all participants. To
do so, one can use the CADP model checker, which takes as input an LTS model
and a temporal property specified in MCL [19]. We distinguish two types of
properties: (i) those that depend on the application (e.g., the controller must
eventually transmit a specific message to a certain manager), (ii) those that do
not depend on the application (e.g., checking the absence of deadlock).

3.3 Running Example and Experiments

We present below an example of LNT process encoding the repair manager
shown in Figure 3 and its buffer. This manager synchronizes with its buffer on
the repair failure REC message when this message is available in the buffer.
Note that the buffer process (buffer repair) is equipped with a parameter
corresponding to the buffer data type, that is the structure where messages are
stored, initialized to nil.

process couple_buffer_repair [repair failure REC: any, repair repair EM:

any, repair failure EM: any] is
par repair failure REC is

repair R0 [repair failure REC, repair repair EM]

||

buffer repair [repair failure EM, ...] (nil)

end par

end process

From the encoded LNT specification obtained when calling the LNT code
generator, we use CADP compilers to generate the LTS describing the whole
system for our running example (consisting of 194,026,753 states and 743,878,684
transitions). Then, we use hiding and minimization techniques to generate the
LTS of the controller (consisting of 28,992,305 states and 46,761,782 transitions).
An excerpt of the controller LTS, which focuses on the failure and overload
detection in the same period of time, is shown in Figure 5. We recall that we
use specific labels (namely TBEGIN and TEND) for characterizing the messages
received during a same period of time. This LTS shows that when the controller
receives a failure and an overload message (of a Tomcat server in this example)
during a same period, it forwards only the failure message and drops the overload
message. In contrast, when the controller receives these two messages in two
different periods, it forwards them to the repair and sizing manager, resp.

We show below two examples of liveness properties, the first one is checked
on the controller LTS and the second one on the LTS of the whole system:

– The reception of a failure message by the controller is eventually followed by
an emission of a repair message

[true* .app_failure_tomcat_REC] inev (app_repair_tomcat_EM)
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Fig. 5. Excerpt of the controller LTS for the running example

– The emission of an overload message by the application manager is eventually
followed by an emission of a reparation or addition message by the controller

[true* .app_overload_tomcat_EM]

inev (app_repair_tomcat_EM or app_add_tomcat_EM)

This property shows that the overload message is handled by the repair
manager when both Tomcat failure and overload occur within a same period
of time. Otherwise, it is handled by the sizing manager.

Both properties use the macro inev (M), which indicates that a transition la-
belled with M eventually occurs. This macro is defined as follows:

macro inev (M) = mu X .( < true > true and [ not (M) ] X ) end macro

Our approach was applied for validation purposes on many illustrative ex-
amples of our dataset (managers and coordination requirements). Table 1 sum-
marizes some of our experiments. Each managed application used as input is
characterized using the number of managers and the coordination requirements.
We give the size of the LTS (states/transitions) of the whole system as well
as the controller LTS obtained after minimization (wrt. a strong bisimulation
relation). The last column gives the overall time to synthesize the controller.

|Managers| Whole system LTS Controller LTS Time
|states| |transitions| |states| |transitions| (m:s)

2 2,307 6,284 118 157 0:10
3 103,725 365,845 1,360 2,107 1:15
4 145 267 38 44 0:06
5 10,063,873 39,117,110 17,662 28,003 43:59
6 1,900 4,945 186 285 0:08
10 300,000 1,686,450 1,786 3,471 6:54

Table 1. Experimental results: LTSs size and synthesis time
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We observe that, for some examples (gray lines), the size of the generated
controller LTSs and the time required for generating those LTSs grow impor-
tantly when one of the managers exhibit looping behaviours, and particularly
cycles with send messages (see, e.g., the 4th example in Table 1). On a wider
scale, we note that LTS sizes and generation times increase with the number of
managers in parallel (see, e.g., the last line of Table 1).

4 Code Generation and Deployment

We present in this section our Java code generation techniques, which allow to
deploy controllers in the context of real-world applications. In particular, we
show some experimental results for our running example where the autonomic
managers are coordinated using a centralized controller generated with our ap-
proach.

4.1 Java Code Generation Techniques

Our Java code generation techniques are based on the use of object-oriented
programming. They take as input the controller LTS synthesized beforehand,
and automatically generate all java classes, methods, and types necessary for
deploying it. The controller LTS is encoded as an instance of a Java class LTS.
This class relies on two classes, namely a class State and a class transition

which represents the transitions between the states. The LTS class also defines an
attribute cstate representing the current active state in the controller model.
This variable is initialized with the LTS initial state. Some Java code is necessary
to interface the controller with the running application. We particularly define
a method called react that takes as input a list of messages received within a
period of time and applies successive moves according to the received messages,
the current state of the controller, and the behaviour of the generated controller.
This method computes the messages that the controller has to send as reaction
to these received messages, and updates the current state of the controller.

4.2 Deployment

Our generated Java code can be deployed and applied on concrete applications
using the event-based programming paradigm. The period of time described us-
ing special actions TBEGIN and TEND in the controller LTS has to be instantiated
with a real value. This period is computed using sampling techniques and im-
plemented using the sleep method in Java. The choice of this period cannot be
realized during the synthesis phase and is achieved just before deployment. A
wrong choice of this period may lead to the reception of these actions in different
periods.

The main behaviour of the controller (run method) consists of an infinite
reactive loop, which successively receives events from the application, computes
reactions (messages to be sent by the controller), and encodes these messages
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as events too. A part of the Java program is dedicated to converting the events
raised by the application into the input format of the react method, and con-
versely translates the output of the react method into a list of events executed
by the system. Each event contains the corresponding message and additional
information, for instance a failure event has also as parameter the impacted
server and further information (identifier, port, etc.).

4.3 Experiments on our Running Example

In this section we present some experiments we performed when deploying and
running our controller for the multi-tier application introduced previously. To
do so, we used a virtualized experimental platform based on Openstack, which
consists of six physical machines on which we instantiate virtual machines.

The JEE multi-tier application is initially configured and deployed with a
server at each tier, i.e., an Apache Web server, a Tomcat server, a MySQL proxy,
and a MySQL database. The initial deployment phase is automated using a
dynamic management protocol allowing to connect and start the involved servers
and database in the right order [1]. In a second step, we use jmeter to inject
increasing load on the Apache server and thus to simulate the clients that send
HTTP requests on the managed system. Once we have at least two active Tomcat
servers and two MySQL databases, we start simulating failures using a failure
injector. When we start injecting failures, we stop augmenting the workload
on the Apache server and keep the same load for the rest of the execution. The
failure injector is flexible and can be used for affecting any active server (Apache,
Tomcat, MySQL, etc.), any number of times (single failure or multiple failures of
the same or of different servers), and at any time (same period of time, different
periods of time, etc.). We conducted our experiments on applications with or
without controller. We have considered different scenarios with failures of the
Apache server and of the MySQL proxy as well as failures/load variation of the
Tomcat servers and of the MySQL databases.

Figure 6 shows an excerpt of the system behaviour after 500 minutes since
the application deployment. We observe that, at this moment, the application is
composed of five Tomcat servers and three MySQL databases. Figure 6 presents
several cases of failure injection. As an example, at minute 508, a failure of a
replicated MySQL database causes a workload increase on the other replicated
servers. These two actions happen in the same period, but the controller forwards
only the failure detection to the repair manager. Accordingly, a single MySQL
database is added by the repair manager and the workload returns at once to
its average value.

We made several experiments in which we varied the number of failures, the
Apache load, and the minimum/maximum thresholds of the Tomcat servers and
of the MySQL databases. In all these cases, we observe that the controller suc-
ceeds in detecting and correcting the problems while avoiding undesired opera-
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Fig. 6. Tomcat and MySQL failure/overload in a coordinated environment

tions, that is, the unnecessary addition/removal of VMs. Figure 7 shows exper-
imental results obtained with different number of failures. For instance, we see
that when injecting 14 failures to our running application, the controller applies
18 reconfiguration operations on the system (instead of 40 without controller),
and thus avoids 22 undesired operations.
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5 Related work

Controller synthesis for discrete event systems was originally introduced by Ra-
madge and Wonham [25, 23]. In [25], the authors present a controllable lan-
guage as a solution for the supervisory of hybrid control systems. This solution
generates controllers from a given system called plant and designed as a finite
automaton. [23] proposes a supervisor synthesis algorithm, which allows to au-
tomatically generate a controller from a plant modelled as a finite automaton
and properties to be ensured by the controller. The generated controller per-
mits all possible legal executions. This synthesis approach is based on a classical
two-person game approach. These approaches can be characterized as restrictive
because they directly influence and impact the controlled system.

In [9], the authors introduce an approach based on contract enforcement
and abstraction of components to apply a modular discrete controller synthesis
on synchronous programs. These programs are presented by Synchronous Sym-
bolic Transition Systems. The authors integrate this approach in a high-level
programming language combining data-flow and automata. Another decentral-
ized supervisory control approach for synchronous reactive systems is presented
in [24]. This work is based on finite state machines and computes local controllers
that act on the subsystems to ensure a global property. The local controllers
are automatically generated and this approach was applied to several examples
for validation purposes. This approach allows decentralized control whereas we
generate a centralized controller. Moreover, they rely on synchronous systems
and synchronous communication semantics, whereas we assume asynchronous
systems and communication, meaning that the controllability hypothesis is im-
possible in our context.

In [21], the authors propose a generic integration model that focuses on cat-
egorizing all autonomic loops in terms of reciprocal interference. This generic
model can be used to manage the synchronization and coordination of multiple
control loops, and it was applied to a scenario in the context of cloud computing
and evaluated under simulation-based experiments. This paper does not provide
any synthesis techniques for coordinating the multiple loops, and coordination
is achieved in a rather manual way.

[20] presents a framework for the coordination of multiple autonomic man-
agers in the cloud computing context. These works use a protocol based on
synchronous mechanisms and inter-manager events and actions along with syn-
chronization mechanisms for coordinating these managers. The main difference
compared with our work is that this paper focuses on quality of service whereas
our focus was on behavioural and functional aspects of the system execution.

Other recent works [8, 11, 12] propose some techniques based on synchronous
discrete controller synthesis for coordinating autonomic managers, such as self-
repair and self-sizing managers. The communication between the generated con-
troller and the managers is synchronous and uses a synchronous language BZR,
which cannot impose a specific order between requirements and contains multiple
and complicated operations. This approach uses a background in synchronous
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systems and languages, whereas our approach assumes that communication is
achieved asynchronously.

[7] presents the Aeolus component model and explains how some activities,
such as deployment, reconfiguration, and management phases of complex cloud
applications, can be automated in this model. Aeolus takes as inputs high-level
application designs, user needs, and constraints (e.g., the number of required
ports that can be bound to a client port) to provide valid configuration envi-
ronments. This work presents some similarities with ours, but does not propose
solutions for verifying that the constraints are satisfied in the target configura-
tions.

In [4], the authors present an extension of TOSCA (OASIS Topology and
Orchestration Specification for Cloud Applications) in order to model the be-
haviour of component’s management operations. More precisely, they specify the
order in which the management operations of an instantiated component must
be executed. In this work, the authors explain how management protocols are
described as finite state machines, where the states and transitions are associated
with a set of conditions on the requirements and capabilities of the components.

In [22], the authors introduce AutoMate, a framework for coordinating multi-
ple autonomic components hosted on Grid applications, using high-level rules for
their dynamic composition. The rules are executed using a decentralized deduc-
tive engine, called RUDDER, and composed of distributed specialized agents.
RUDDER deploys the rules and coordinates their execution. It assigns priorities
to these rules in order to resolve conflicting decisions between them. However,
it uses a manual administration to evaluate and update the interaction rules.

6 Conclusion

In this paper, we propose new controller synthesis techniques to generate a cen-
tralized controller that allows to orchestrate a set of autonomic managers. These
managers are modelled as LTSs and the set of coordination requirements is spec-
ified using reaction rules and regular expressions. The generated controller com-
municates with the autonomic managers asynchronously using message passing
via FIFO buffers. Our solution for controller synthesis relies on an encoding of
our models and of the coordination requirements into the LNT process algebra.
From this encoding, an LTS can be generated using CADP compilers, and hiding
and reduction techniques. This LTS exhibits all the possible executions of the
controller. One can also take advantage of this encoding to validate the gener-
ated controller with the CADP verification tools, such as the Evaluator model
checker. Indeed, since coordination requirements are written by a human being,
they can be erroneous, which results in that case in an erroneous controller as
well. Finally, we propose code generation techniques to automatically obtain the
Java code corresponding to the controller LTS. We validated our approach with
many variants of the multi-tier Web application we used as running example in
this paper.
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It is worth noting that our approach covers all the development steps from
the design of the coordination requirements to the actual deployment of the syn-
thesized controller, which helps to coordinate at runtime real-world applications.
In addition, these synthesis techniques can be used to control other applications
where components are modelled as LTSs and communicate asynchronously. This
is the case in application areas such as Web services, multi-agent systems, or
hardware protocols.

A first perspective is to generate distributed controllers instead of a cen-
tralized controller. This would permit to preserve the degree of parallelism of
the system, where the involved participants could exchange messages without
systematically passing through a unique controller. Another perspective aims at
applying performance evaluation for the whole system using IMC (Interactive
Markov Chain) theory [14, 13].
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Abstract. Typed models of connector/component composition specify
interfaces describing ports of components and connectors. Typing ensures
that these ports are plugged together appropriately, so that data can flow
out of each output port and into an input port. These interfaces typically
consider the direction of data flow and the type of values flowing. Com-
ponents, connectors, and systems are often parameterised in such a way
that the parameters affect the interfaces. Typing such connector fami-
lies is challenging. This paper takes a first step towards addressing this
problem by presenting a calculus of connector families with integer and
boolean parameters. The calculus is based on monoidal categories, with
a dependent type system that describes the parameterised interfaces of
these connectors. As an example, we demonstrate how to define n-ary
Reo connectors in the calculus. The paper focusses on the structure of
connectors—well-connectedness—and less on their behaviour, making it
easily applicable to a wide range of coordination and component-based
models. A type-checking algorithm based on constraints is used to anal-
yse connector families, supported by a proof-of-concept implementation.

1 Introduction

Software product lines provide the flexibility of concisely specifying a family of
software products, by identifying common features of functionality among these
products and automatising the creation of products from a selection of relevant
features. Interesting challenges in this domain include how to specify families
and combinations of features, how to automatise the creation process, how to
identify features from a collection of products, and how to reason about (e.g.,
verify) whole families of products.

This paper investigates such variability in coordination languages, i.e., it
studies connector families that exogenously describe how (families of) compo-
nents are connected. The key problem is that different connectors from a single
family can have different interfaces, i.e., different ways of connecting to other
connectors. Hence, specifying and composing such families of connectors while
guaranteeing that interfaces still match becomes non-trivial.

? This research is supported by the FCT grant SFRH/BPD/91908/2012.
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Consider, for example a component c that produces 3 values, and a family
of connectors ∇n that merge n values into a single output. We say the interface
of c has 3 output ports, and the interface of each ∇n has n input ports and 1
output port. This paper provides a calculus to compose such n-ary connectors
while guaranteeing that all their ports can be properly connected. For example,
“c ; ∇3” denotes the sequential composition of c and a merger with 3 inputs,
connecting the output ports of the first to the input ports of the second, resulting
in a well-connected connector with 0 inputs and 1 outputs.

c1

cm

...
...
n times

+
c1

cm

...
... k times+

Fig. 1. Example of the composition of connectors.

Fig. 1 exemplifies more complex compositions of n-ary connectors. The left
presents the composition of m parallel instances of the component c, written as
cm, with a merger with n inputs. This composition yields a new connector that,
given some n and m values, produces a new connector with a single (output)
port. This paper provides a type system that checks if such n and m values
exist, and their relation: n must be 3 times larger than m. More formally, the
connector is written as λm :N, n :N · (cm ; ∇n), and the type system yields both
the type ∀m :N, n :N ·0→ 1 and the constraint n = m∗3. This means that both
the connector and the type are parameterised by two numbers m and n, the
connector has type 0→ 1, and n = m ∗ 3 must hold for the connector to be well
typed. The right example of Fig. 1 shows a variation of this example, where the
instances of c are composed with k instances of a binary merger ∇2. The type
of the composed connector is ∀m :N, k :N · 0 → k constrained by 3 ∗m = 2 ∗ k,
which means that 3 ∗m = 2 ∗ k must hold for the connector to be well typed,
yielding a connector with 0 inputs and k outputs. By writing this connector as
λm :N, k :N · (c2∗m ; ∇k2) the type becomes ∀m :N, k :N · 0→ 3 ∗m, constrained
by k = 3 ∗m.

To increase compositionality, parameterised connectors can also be com-
posed. Hence (λm :N·cm) ; (λn :N·∇n) has the same type as the left composition
of Fig. 1. Finally, extra constraints can be added to parameterised connectors.
For example, λm :N · (cm |m≤10) represents a parameterised connector that can
have at most 10 instances of the connector c. We call connector families such
connectors that can be parameterised, constrained, and composed.

Summarising, the main contributions of this paper are:

– a calculus for families of connectors with constraints;
– a type system to describe well-defined compositions of such families; and
– a constraint-based type-checking algorithm for this type system.
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Connectors are defined incrementally. We start by defining a basic connector cal-
culus for composing connectors inspired by Bruni et al.’s connector algebra [5,3]
(Section 2). This calculus is then extended with parameters and expressions,
over both integers and booleans (Section 3), being now able to specify connec-
tors (and interfaces) that depend on input parameters. Both the basic and the
extended calculus are accompanied by a type system; the latter is an extension of
the former, allowing integer and boolean parameters (and effectively becoming
a dependent type system). Section 4 introduces connector families, by explicitly
incorporating constraints over the parameters, and by lifting the composition
of connectors to the composition of constrained and parameterised connectors.
Section 5 describes an algorithm to type-check connector families with untyped
ports, i.e., when the type flowing over each port is not relevant, and presents our
prototype implementation. This paper wraps up with related work (Section 6),
conclusions and future work (Section 7).

2 Basic Connector Calculus

This section describes an algebraic approach to specify connectors (or compo-
nents) with a fixed interface, that is, with a fixed sequence of input and output
ports that are used to send and receive data. The main goal of this algebraic
approach is to describe the structure of connectors and not so much their be-
haviour. We illustrate the usage of this algebra by using Reo connectors [2],
which have well-defined semantics, although our approach can be applied to any
connector-like model that connects entities with input and output interfaces.

We start by presenting an overview of how to specify connectors using our
calculus. We then describe the syntax of the basic connector calculus and a type
system to verify if connectors are well-connected, followed by a brief discussion
on how to describe the semantics of connectors orthogonally to this calculus.

2.1 Overview

Our basic connector calculus is based on monoidal categories—more specifically
on traced monoidal categories [13]—where connectors are morphisms, “;” is the
composition of morphisms with identity id, and “⊗” is the tensor product. The
operator “⊗” composes connectors in parallel, while the operator “;” connects
the ports of the given connectors. Objects of this category are interfaces, which
correspond to ports in our connectors and include the unit of the tensor product
represented by 0. The commutativity of the tensor product is captured by a
family of symmetries that swap the order of ports in parallel. Loops can be
represented via traces, which plug part of the right interface to the left interface
of the same connector.

The connector in Table 1 helps understanding the intuition behind our al-
gebra of connectors. Our algebra is inspired by the graphical notation used for
monoidal categories (see, e.g., Selinger’s survey [13]), and by Bruni et al.’s con-
nector algebra [5,3]. The Reo connector on the left is composed out of smaller
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subconnectors, connected with each other via shared ports ( ). The second col-
umn describes a possible representation of the same connector, writing the names
of each subconnector parameterised by its ports. For example, the connector ‘ ’
is written as sdrain(a, b) to mean that it has two ports named a and b. Composing
connectors is achieved via the 1 operator, which connects ports with the same
names – this is the most common way to compose Reo connectors in the litera-
ture. In this paper we will use instead the algebraic representation on the right of
Table 1, where port names are not necessary. The connector ∆⊗∆, for example,
puts two duplicator channels in parallel, yielding a new connector with 2 input
ports and 4 output ports. This can be composed via “;” with id ⊗ sdrain ⊗ fifo
because this connector has 4 input ports: both the id and the fifo channels have
one input port and the sdrain has 2 input ports.

Table 1. Specification of the alternator connector with port names and algebraically.

Graphical With port names Algebraic term

∆(a, a1, a2) 1 ∆(b, b1, b2) 1
sdrain(a2, b1) 1
id(a1, c1) 1 fifo(b2, c2) 1
∇(c1, c2, c)

∆⊗∆;
id⊗ sdrain⊗ fifo;
∇

2.2 Syntax

The syntax of connectors and interfaces of our basic connector calculus is pre-
sented in Fig. 2. Each connector has a signature I → J consisting of an input
interface I and an output interface J . For example, the identity connector idI has
the same input and output interface I, written idI : I → I. Ports of an interface
are identified simply with a capital letter, such as A, which capture the type of
messages that can be sent via that port. In our examples we assume that A can
only be the type 1, which represents any port type. This more specific model is
also exploited in our algorithm for constraint solving (later in Section 5).

c ::= c1 ; c2 sequential composition
| c1 ⊗ c2 parallel composition
| idI identity connectors
| γI,J symmetries
| TrI(c) traces
| p ∈ P primitive connectors

p ∈ P ::= ∆I duplicator with output I
| ∇I merger with input I
| sdrain synchronous drain
| fifo buffer
| . . . user-defined connectors

I, J ::= I ⊗ J tensor
| 0 empty interface
| A port type

Fig. 2. Connectors (left), primitive connectors (top-right), interfaces (bottom-right).

209



The intuition of these connectors becomes clearer with the visual representa-
tions exemplified in Fig. 3. All connectors are depicted with their input interface
on the left side and the output interface on the right side. Each identity connec-
tor idI has the same input and output interface I; each symmetry γI,J swaps the
top interface I with the bottom interface J , hence it has input interface I ⊗ J
and output interface J⊗I; and each trace TrI(c) creates a loop from the bottom
output interface I of c with the bottom input interface I of c, hence if c has
input interface I ′ ⊗ I and output interface J ′ ⊗ I then the trace has input and
output interaces I ′ and J ′, respectively.

id1 id1 ; fifo
sdrain γ1⊗1,1 ∇1⊗1 id1 ⊗ fifo Tr1(γ1,1)

Fig. 3. Visual representation of simple connectors.

Parallelism is represented by tensor products, plugging of connectors by mor-
phism composition, swapping order of parameters by symmetries, and loops by
traces. Connectors and types obey a set of Equations for Connectors that al-
low their algebraic manipulation and capture the intuition behind the above
mentioned representations. Fig. 4 presents some of these equations, which re-
flect properties of traced monoidal categories. For example, the fact that two
symmetries in sequence with swapped interfaces are equivalent to the identity
connector, or how the trace of the symmetry γ1,1 is also equivalent to the identity.

idI ; c = c = c ; idJ (if c : I → J)
γI,J ; γJ,I = idI⊗J

(c1 ⊗ c2)⊗ c3 = c1 ⊗ (c2 ⊗ c3)
0⊗ I = I = I ⊗ 0

(I1 ⊗ I2)⊗ I3 = I1 ⊗ (I2 ⊗ I3)

TrI(γI,I) = idI
Tr0(c) = c

c1 ; TrI(c2) = TrI(c1 ⊗ idI ; c2)
TrI(c1) ; c2 = TrI(c1 ; c2 ⊗ idI)
TrI(TrJ(c)) = TrI⊗J(c)

Fig. 4. Equations for Connectors – based on properties of traced monoidal categories.

2.3 Type rules

Every connector c has an input interface I and an output interface J , written
c : I → J . We call these two interfaces the type of the connector. Every primitive
has a fixed type, for example, fifo : 1 → 1 and ∇1⊗1 : 1 ⊗ 1 → 1. The typing
rules for connectors (Fig. 5) reflect the fact that two connectors can only be
composed sequentially if the output interface of the first connector matches the
input interface of the second one. A connector is well-connected if and only if it
is well-typed.
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(sequence)

` c1 : I1 → J
` c2 : J → J2

` c1 ; c2 : I1 → J2

(parallel)

` c1 : I1 → J1
` c2 : I2 → J2

` c1 ⊗ c2 : I1 ⊗ I2 → J1 ⊗ J2

(trace)

` c : I1 ⊗ J → I2 ⊗ J
` TrJ(c) : I1 → I2

(sym)

` γI,J : I ⊗ J → J ⊗ I
(id)

` idI : I → I

(prim)

p : I → J ∈ P
` p : I → J

Fig. 5. Type rules for basic connectors.

For example, using these type rules it is possible to infer the type of the con-
nector Tr1⊗1(γ1⊗1,1 ; (fifo⊗fifo⊗fifo)) to be 1→ 1, but no type could be inferred
after removing one occurence of fifo. This connector is chaining in sequence 3
parallel fifo connectors.

The type rules from Fig. 5 rely on the syntactic comparison of interfaces,
e.g., rule (sequence) allows c1 and c2 to be composed only if the output interface
J of c1 is syntactically equivalent to the input interface of c2. To support more
complex notions of interfaces we use the constraint-based type rules from Fig. 6,
which explicitly compare interfaces that must be provably equivalent instead of
syntactically comparing them. Rules (sym), (id), and (prim) remain the same, only
with the context. The typing judgments now include a context Γ |φ consisting
both of a set of typed variables Γ (that will only be used in the next section)
and a set of constraints φ that must hold for the connector to be well-typed.
The context must be always well-formed, i.e., Γ cannot have repeated variables
and φ must have at least one solution, but for simplicity we do not include these
global restrictions in the type rules.

(sequence)

Γ |φ ` c1 : I1 → J1 Γ |φ ` c2 : I2 → J2

Γ |φ, J1 = I2 ` c1 ; c2 : I1 → J2

(parallel)

Γ |φ ` c1 : I1 → J1 Γ |φ ` c2 : I2 → J2

Γ |φ ` c1 ⊗ c2 : I1 ⊗ I2 → J1 ⊗ J2
(trace)

Γ |φ ` c : J1 → J2

Γ |φ, J1=XI⊗I, J2=XJ⊗I ` TrI(c) : XI → XJ

Fig. 6. Constraint-based type rules.

2.4 Connector behaviour

Semantics for the behaviour of connectors can be given in various ways. For this
paper we use the Tile Model [7], as it aligns closely with the algebraic presenta-
tion of connectors. We also use the Reo coordination language—more specifically
its context independent semantics [3]—as the behaviour of our primitive connec-
tors, whose visual representation has been being used.
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We use the same ideas from the Tile Model proposed for Reo [3], using a
variation of the category used to describe connectors. Each connector in the Tile
Model consists of a set of tiles, one for each possible behaviour, as exemplified in
Fig. 7. Each of these tiles contains 4 objects of a double category (two categories
with the same objects) and four morphisms between pairs of objects. Visually, a
tile is depicted as a square with an object in each corner and with morphisms on
the sides of this square. These morphisms go from left to right and from top to
bottom: horizontal morphisms are from one category, describing the construction
of a connector, and the vertical morphisms are from another category, describing
the evolution in time of the connector. More specifically, horizontal morphisms
are connectors as specified in Fig. 2, and objects are interfaces. Vertical mor-
phisms are either flow, noFlow, or a tensor product of these, representing a step
where data flows over the ports where the flow morphism is applied, and data
does not flow over the ports where noFlow is applied.

1 1

1 1

flow flow

1 1

1 1

noFlow noFlow

1 1

1 1•
flow noFlow

1 1

1 1

noFlow noFlow

Fig. 7. Tiles for the behaviour of the id1 (left) and the empty fifo (right) connectors.

Tiles can be composed vertically or horizontally when their adjacent mor-
phisms match, or composed in parallel using the tensor product ⊕. Note that two
morphisms being the same also implies that their domain and codomain must be
the same (i.e., the source and destination of the arrows). The rest of this paper
will focus on the horizontal composition of connectors, i.e., on the structural
composition of connectors, and not on the behaviour of connectors—the verti-
cal composition. This focus also makes the results presented here more easily
applicable to any other coordination or component model where connectors or
components have a set of interfaces that can be composed using our calculus.

3 Parameterised Connector Calculus

Connectors are now extended in two ways: (i) by adding integer and boolean
expressions to control n-ary replication and conditional choice, and (ii) by adding
free variables that can be instantiated with either natural numbers or booleans.
These variables are also used in the connector types, previously written as I → J ,
which are now given by the grammar:

T ::= I → J | ∀x :P · T
where x is a variable and P ∈ {N,B} represents a primitive type that can be
either the natural numbers (N) or booleans (B).
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This section introduces the extended syntax and some of its properties, de-
scribes motivating examples, and extends the type rules for the connector types
described above with boolean and integer parameters.

3.1 Syntax

The extended syntax of connectors and interfaces with integers and booleans is
defined in Fig. 8. We write cα instead of cx←α when x is not a free variable in c.

c ::= . . . connectors
| cx←α n-ary parallel replication
| c1 ⊕φ c2 conditional choice
| λx :P · c parameterised connector
| c(φ) bool-instantiation
| c(α) int-instantiation

I ::= . . . interfaces
| Iα n-ary parallel replication
| I ⊕φ J conditional choice

α, β integer expressions
φ, ψ boolean expressions

Fig. 8. Extended syntax of connectors (left) and interfaces (right).

This paper does not formalise integer and boolean expressions with typed
variables, since the details of these expressions are not relevant. The semantics
of the n-ary parallel replication, the conditional choice, and the instantiation of
parameters4 is captured by the new Equations for Connectors in Fig. 9. These
equations include a new notation—c[v/x]—that stands for the substitution of
all variables x in c that appear freely (i.e., not bounded by a λ quantifier) by
the expression v. This paper does not formalise free variables nor substitution,
which follow the standard definitions.

cx←α = = c[0/x]⊗ . . .⊗ c[α−1/x]
c1 ⊕true c2 = c1
c1 ⊕φ c2 = c2 ⊕¬φ c1

(λx :P · c)(v) = c[v/x]

Iα = I ⊗ . . .⊗ I (α times)
I1 ⊕true I2 = I1
I1 ⊕φ I2 = I2 ⊕¬φ I1

Fig. 9. Equations for Connector – replication, choice, and instantiation.

Although this extension allows an n-ary composition in parallel of connectors
and not in sequence, n-ary sequences of connectors can also be expressed by using
traces, as exemplified in the general sequence of fifo connectors on the top-left
corner of Fig. 10. We write expressions such as n−1 instead of the interface 1n−1

for simplicity, when it is clear that these expressions represent interfaces. Observe
that this example has been mentioned in the end of Section 2.3, for the specific
case of 3 fifos in sequence, already defined using traces and parallel replication.
The bottom example is more complex, and is based on the sequencer connector
4 Known as β-reduction in lambda calculus.
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found in Reo-related literature [2]. This connector forces n (synchronous) streams
of data to alternate between which one has dataflow. It uses the zip and unzip
connectors to combine γ connectors (symmetries) in order to regroup sequences
of pairs into a pair of sequences and vice-versa. The top-right corner instantiates
the zip connector to illustrate the overal idea; the visual representation unfolds
the trace, used to produce a sequence of connectors (as in seq-fifo).

seq-fifo =
λn :N ·
Trn−1

(γn−1,1 ; fifon)

zip(3) = Tr12(
γ12,6;

(
id3−x⊗ γx1,1
⊗ id3−x

)
x←3

)
≈

sequencer = λn :N ·
(∆n ; unzip(n))⊗ Trn(γn−1,1 ;
(fifofull;∆2)⊗
(fifo;∆2)

n−1 ; unzip(n)) ;
idn ⊗ (zip(n) ; drainn)

zip = λn :N · Tr2n2−2n(
γ2n2−2n,2n; (idn−x⊗ γx1,1⊗ idn−x)

x←n)
unzip = λn :N · Tr2n2−2n(
γ2n2−2n,2n; (idx+1⊗ γn−x−1

1,1 ⊗ idx+1)
x←n)

unzip(n)

unzip(n)

zip(n)•

Fig. 10. A sequence of n fifo connectors (top-left), an instance of the zip connector
(top-right), and an n-ary sequencer connector (bottom).

The details about the behaviour of the sequencer connector are out of the
scope of this paper. However, observe that the visual representation is no longer
precise enough, since the dotted lines only help to provide intuition but do not
specify completely the connector. The parameterised calculus, on the other hand,
precisely describes how to build a n-ary sequencer for any n ≥ 0.

3.2 Parameterised type rules

The extended type rules are presented in Fig. 11, which now use the context Γ
consisting of a set of variables and their associated primitive type (B or N).

As mentioned before, the context cannot contain repeated variables, but this
restriction is omitted from the type rules. The actual verification of the type of
the boolean and integer variables is done during the type-checking of boolean
and integer expressions, which is well known and not defined in this paper. Hence
the new type rules have some gray premises, corresponding to the type rules for
booleans and integer expressions. The typing judgment Γ |φ ` e :P for integer
and boolean expressions means that Γ ` e :P (i.e., the variables in the boolean
or integer expression e have the type specified in Γ ) in a context where φ is
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(parameterisation)

Γ, x :P |φ ` c : T x /∈ φ
Γ |φ ` λx :P · c : ∀x :P · T

(instantiation)

Γ |φ ` v : P Γ |φ ` c : ∀x :P · T
Γ |φ ` c(v) : T [v/x]

(replication)

Γ |φ ` α : N Γ, x :N |φ ` c : I → J
φ1 =

(
XI = I[0/x]⊗ . . .⊗ I[α− 1/x]

)

φ2 =
(
XJ = J [0/x]⊗ . . .⊗ J [α− 1/x]

)

Γ |φ, φ1, φ2 ` cx←α : XI → XJ

(choice)

Γ |φ ` ψ : B
Γ |φ ` c1 : I1 → J1
Γ |φ ` c2 : I2 → J2

Γ |φ ` c1 ⊕ψ c2 : I1⊕ψI2 → J1⊕ψJ2

Fig. 11. Parameterised type rules—x /∈ φ means x does not appear in φ. Previous type
rules remain unchanged.

satisfiable. The notation I[e/x] denotes the substitution of free occurrences of
x in I by the expression e, similarly to the substitution in connectors, also not
formalised here. Observe that the constraint ψ in the (choice) rule does not
influence the typing of c1 and c2. Intuitively, if ψ and ¬ψ was to be added to
the context when typing c1 and c2, respectively, then very likely one of these
branches would have false in the context, meaning it could not be typed.

∅ | 1⊗ (n− 1) = 1n, (n− 1)⊗ 1 = XI ⊗ (n− 1), 1n = XJ ⊗ (n− 1)
` λn :N · Trn−1(γn−1,1 ; fifon) : ∀n :N ·XI → XJ

pa
ra

m
et

er
is
at

io
n




x /∈
(
1⊗ (n− 1) = 1n, (n− 1)⊗ 1 = XI ⊗ (n− 1), 1n = XJ ⊗ (n− 1)

)

n :N | 1⊗ (n− 1) = 1n, (n− 1)⊗ 1 = XI ⊗ (n− 1), 1n = XJ ⊗ (n− 1)
` Trn−1(γn−1,1 ; fifon) : XI → XJ

tr
ac

e




n :N | 1⊗ (n− 1) = 1n

` γn−1,1 ; fifo : (n− 1)⊗ 1→ 1n

se
qu

en
ce

[
n :N |∅ ` γn−1,1 : (n− 1)⊗ 1→ 1⊗ (n− 1)

n :N |∅ ` fifon : 1n → 1n

Fig. 12. Derivation tree for the seq-fifo connector; contexts are represented grey.

We illustrate the usage of these type rules by building the derivation tree for
the seq-fifo connector (Fig. 12), where we illustrate how to calculate the type
of this connector by consecutively applying type rules. At every step of this
derivation tree the context is well-formed (Γ has no repeated variables and φ is
always satisfiable). From the existence of this derivation tree one can conclude
that the seq-fifo connector is well-typed, and by further analysing the constraints
in the context it is possible to simplify the type to ∀n :N · 1→ 1.

4 Connector families

This section introduces connector families: parameterised connectors that can (i)
be restricted by given constraints ψ, written c |ψ, and (ii) be composed with each
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(restriction)

Γ |φ ` ψ Γ |φ, ψ ` c : T
Γ |φ ` c |ψ : T |ψ

(parallel)

Γ |φ ` c1 : I1 → J1 |ψ1 Γ |φ ` c2 : I2 → J2 |ψ2

Γ |φ ` c1 ⊗ c2 : I1 ⊗ I2 → J1 ⊗ J2 |ψ1,ψ2

Fig. 13. Adding restrictions to types. Other rules remain almost the same, adapted in
a similar way to the (parallel) rule.

other—sequentially, in parallel, via the choice or replication operators, or within
traces. These restricted and composable connector families represent families in
the same sense as software families in the context of software product lines (SPL)
engineering [11]. The added constraints represent the family, which in the SPL
community are often derived from feature models.

4.1 Restricted connectors and types

Connectors can now be written as c |ψ, meaning that the connector c is restricted
by the constraint ψ. For example, the connector with at most 5 fifo connectors
in parallel can be written as λn :N · (fifon |n≤5). The type of this connector is
written similarly as ∀n :N · n→ n |n≤5. More formally, types now include these
constraints, following the following syntax.

T ::= I → J | ∀x :P · T | T |ψ
The main type rules are presented in Fig. 13. The new rule (restriction) introduces
a constraint ψ from the connector to the context. All other rules are adapted in a
similar way to the (parallel) rule, by simply collecting the restriction constraints in
the conclusions of the rules. For readability we write ‘ψ1, ψ2’ to denote ‘ψ1∧ψ2’.
A connector c is now well-typed if there is a derivation tree ∅ |φ ` c : T |ψ such
that φ∧ψ is satisfiable, i.e., ψ has at least one solution that does not contradict
at least one solution of φ.

The example with a parameterised sequence of fifos from Fig. 12 can be
adapted to restrict to sequences of at most 5 fifos, yielding the typing judgment:

∅ | 1⊗ (n− 1) = 1n , (n− 1)⊗ 1 = XI ⊗ (n− 1) , 1n = XJ ⊗ (n− 1)

` λn :N · (Trn−1(γn−1,1 ; fifon) |n≤5) : ∀n :N ·XI → XJ |n≤5

The conjunction of the above constraints is satisfiable: the possible solutions
map XI and XJ to 1, and map n to any value between 0 and 5. Hence the
connector is well-typed.

4.2 Family composition

Parameterised connectors (Section 3) allow integer and boolean expressions to
influence the final connector. However, the existing type rules for composing con-
nectors do not describe how to compose connectors with parameters. The type
rules in Fig. 14 add support for composing connector families: the composition
of two parameterised connectors produces a new connector parameterised by the
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(fam-parallel)

Γ |φ ` c1 : ∀x1 :T1 · I1 → J1 |ψ1 Γ |φ ` c2 : ∀x2 :T2 · I2 → J2 |ψ2 x1 ∩ x2 = ∅
Γ |φ ` c1 ⊗ c2 : ∀x1 :T1, x2 :T2 · I1 ⊗ I2 → J1 ⊗ J2 |ψ1,ψ2

(fam-sequence)

Γ |φ ` c1 : ∀x1 :T1 · I1 → J1 |ψ1 Γ |φ ` c2 : ∀x2 :T2 · I2 → J2 |ψ2 x1 ∩ x2 = ∅
Γ |φ, J1 = I2 ` c1 ; c2 : ∀x1 :T1, x2 :T2 · I1 → J2 |ψ1,ψ2

(fam-replication)

Γ |φ ` α : N
Γ, x :N |φ ` c : ∀x′ :P · I → J |ψ

φ1 =
(
XI = I[0/x]⊗ . . .⊗ I[α− 1/x]

)

φ2 =
(
XJ = J [0/x]⊗ . . .⊗ J [α− 1/x]

)

Γ |φ, φ1, φ2

` cx←α : ∀x′ :P ·XI → XJ |ψ

(fam-choice)

Γ |φ ` ψ : B
Γ |φ ` c1 : ∀x1 :T1 · I1 → J1 |ψ1

Γ |φ ` c2 : ∀x2 :T2 · I2 → J2 |ψ2

Γ |φ ` c1 ⊕ψ c2 : ∀x1 :T1, x2 :T2 ·
I1⊕ψI2 → J1⊕ψJ2 |ψ1,ψ2

(fam-trace)

Γ |φ ` c : ∀x :P · J1 → J2 |ψ
Γ |φ, I1 = XI ⊗ I, I2 = XJ ⊗ I ` TrI(c) : ∀x :P ·XI → XJ |ψ

Fig. 14. Type rules for the lifted composition operators of connectors.

parameters of both connectors. We write ∀x :P to represent a (possibly empty)
sequence of nested pairs ∀x :P . Note that connectors without parameters are
specific instances of connector families; indeed, the new rules (fam-*) coincide
with their simpler counterparts whenever the set of parameters is empty.

For example, both connectors below have the same type: ∀x1 :N, x2 :N, x3 :N·
1x1 → 1x2 ⊗ 1x3 , under a context where 1x1 = 1x2 ⊗ 1x3 . The first composes 3
connector families, while the second is a family that composes 3 connectors.

(λx1 :N · idx1
1 ) ; (λx2 :N · idx2

1 )⊗ (λx3 :N · idx3
1 ) (composition of families)

λx1 :N, x2 :N, x3 :N · (idx1
1 ; idx2

1 ⊗ idx3
1 ) (family of compositions)

Observe that the modularity gain with the composition of families is achieved
by serialising all input arguments. As a consequence the tensor product ⊗ no
longer obeys the property (c1⊗ c2); (c3⊗ c4) = (c1; c3)⊗ (c2; c4) with connector
families, since the serialisation of the arguments produces different orders.

5 Solving type constraints

This section describes an algorithm to check if the constraints produced by the
type rules are satisfiable; if so, this algorithm also provides an assignment of
variables to values or to other variables.

Constraint-based approaches to type-checking are well-known, for example,
for the lambda calculus [10, Chapter 22], where constraints are solved using an
unification algorithm. However, the unification algorithm used for the lambda
calculus is not enough for our calculus, because interfaces can include complex
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expressions that cannot be just syntactically compared. Hence our algorithm per-
forms algebraic rewritings, uses an unification algorithm (for the simpler cases),
and invokes a constraint solver (for the more complex cases).

We focus only on untyped ports, represented by 1, which mean that any data
can go through these ports. Consequently, interfaces are interpreted as integer
expressions, denoting the number of ports, as we will shortly explain.

5.1 Overview

In our type-checking algorithm interfaces are interpreted as integers, by mapping
constructors of interfaces to integer operations. For example, ([I⊗J ]) = ([I])+([J ])
and ([Iα]) = ([I]) ∗ α, where ([I]) represents the interpretation of I as an integer.
Both the constraints that appear in the context and the constraints that appear
in the type are combined, hence producing a type ∀x :P · I → J |ψ, where ψ
represents the conjunction of these constraints.

We exemplify our approach using the zip connector (Fig. 10), restricted to
when n is at least 5. The type rules produce the type ∀n :N · x3 → x4 |ψ, where
ψ is as follows (after interpreting the interfaces as integer expressions).

x3 + ((2∗n) ∗ (n−1)) = ((2∗n) ∗ (n−1)) + (2∗n) , x4 + ((2∗n) ∗ (n−1)) = x2 ,

x1 =
∑

0≤x<n(((n−x) + (2∗x)) + (n−x)) , x2 =
∑

0≤x<n(((n−x) + (2∗x)) + (n−x)) ,
(2∗n) + ((2∗n) ∗ (n−1)) = x1 , n < 5

Using algebraic laws such as distributivity, commutativity, and associativity of
sums and multiplications, the constraints are simplified as follows.

x3 = 2n , −2n+ 2n2 + x4 = x2 , x1 = 2n2 , x2 = 2n2 , 2n2 = x1 , n < 5

The unification algorithm then produces the sequence of substitutions below,
leaving the n < 5 constraint to be handled in a later phase.

[2n/x3] ◦ [x4 + 2n2 − 2n/x2] ◦ [2n2/x1] ◦ [2n/x4]

The final step is to verify that the remaining constraint (n < 5) is satisfiable
using a constraint solver, allowing us to conclude that the connector is well-
typed. Furthermore, applying the substitution above to the type produced by
the type rules gives the most general type ∀n :N · 2n→ 2n |n<5. The constraint
solver provides a solution, say {n 7→ 0}, which can be used to produce an instance
of the general type: 0→ 0.

5.2 Three-phase solver

This section explains in more detail the three-phase algorithm used to reason
about constraints, exemplified in the previous subsection. These phases are per-
formed in sequence, and consist of the simplification phase, the unification phase,
and the constraint-solving phase, explained below.

Simplification This first phase prepares the constraints obtained by the type
rules to be used by the unification phase. More specifically, it rewrites the con-
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straints by applying algebraic laws of sums and multiplications, building a polino-
mial and manipulating the coefficients. For example, sums like

∑
n1≤x<n2(5∗x),

where 5 ∗ x is linear on x, are rewritten into (5 ∗ n2 + 5 ∗ n1) ∗ (n2 − n1)/2; to
avoid integer divisions the denominator 2 is dropped and the other coefficients
are multiplied by 2. Equalities are rewritten to match, if possible, the pattern
x = α, which is exploited by the unification phase.

Note that the type rules, apart from (restriction), only produce equalities of
integer expressions. Our choice of rewrites included in the prototype implemen-
tation took into account the constraints generated by the type rules using a
range of different connectors. These rewrites are able to simplify all the exam-
ples presented in this paper that do not use inequalities, most of which involve
only linear expressions or are reduced to linear expressions, to a point where
the constraint solving phase was not needed. Furthermore, other fast off-the-
shelf technologies, such as computer algebra systems, could be used to quickly
manipulate and simplify more complex expressions.

Unification The second phase consists of a traditional unification algorithm [10,
Chapter 22] adapted to our type system, which produces both an unification and
a set of constraints postponed to the constraint solving phase. An unification is
formally a sequence of substitutions σ1 ◦ · · · ◦ σn, and applying a unification
to a connector or interface t consists of applying the substitutions in sequence
((t σ1) . . .)σn. For example, unifying the constraints x = 2+ y, z = 3+ x, y = w
produces the sequence of substitutions [2+ y/x] ◦ [3+ 2+ y/z] ◦ [w/y]. Applying
this unification to an interface means first substituting x by 2 + y, followed by
the substitutions of z and y. The resulting interface is guaranteed to have no
occurrences of x, y, nor z, and not to have w bound by any constraint.

The unification algorithm is described by the unify function (Fig. 15) that,
given a set of constraints φ to be solved, returns a pair with a unification and a set
of postponed constraints. The core of unify is defined in the right side of Fig. 15.
For every equality α = α′, it first checks if they are syntactically equivalent
(using ≡). It then checks if either the left or the right side is a variable that does
not occur on the other side; if so, it adds the equality to the resulting unification.
If none of these cases apply, it postpones the analysis of the constraint for the
third phase, by using the second argument of unify as an accumulator.

Constraint solving The last phase consists of collecting the constraints post-
poned by the unification phase and use an off-the-shelf constraint solver. This
will tell us if the constraints are satisfiable, producing a concrete example of
a substitution that satisfies the constraints. In the example of the sequence of

unify(φ) =
unify(φ ; true)

unify(true, φ ; ψ) =
unify(φ ; ψ)

unify(α = α′, φ ; ψ) =



unify(φ ; ψ) if α ≡ α′
unify(φ[α′/x] ; ψ) ◦ [α′/x] if α ≡ x and x /∈ fv(α′)
unify(φ[α/x] ; ψ) ◦ [α/x] if α′ ≡ x and x /∈ fv(α)
unify(φ ; ψ, α = α′) otherwise

Fig. 15. Unification algorithm for constraints over boolean and integer variables.
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fifos with at most 5 fifos (Section 5.1), a possible solution for the constraints is
{n 7→ 4, x1 7→ 1, x2 7→ 1}. This substitution, when applied to the type obtained
for seq-fifo, yields a concrete type instance seq-fifo : 1 → 1. In this example the
concrete type instance matches its general type (∀n :N · 1→ 1), since the value
of n does not influence the type of the connector.

Note that a wide variety of approaches for solving constraints exist. One can
use, for example, numerical methods to find solutions, or SMT solvers over some
specific theory. The expressive power supported by the constraint solver dictates
the expressivity of the expressions α and φ used in the connector, which we
are abstracting away in this paper. The choices made in our proof-of-concept
implementation, briefly explained in the next subsection, are therefore not strict
and can be rethought if necessary.

5.3 Implementation

We developed a proof-of-concept implementation in the Scala that covers all
the examples described in this paper, which can be found online.5 Listing 1
exemplifies the usage of this library—more examples can be also found online.

import paramConnectors.DSL._

val x = "x":I ; val n = "n":I ; val b = "b":B

//----- λx :N · (fifox |x>5) -----//

typeOf( lam(x, (fifo^x) | (x>5)) )

// returns ∀x:I . x -> x | x > 5

typeInstance( lam(x, (fifo^x) | (x>5)) )

// returns c© 6 -> 6

typeSubstitution( lam(x, (fifo^x) | (x>5)) )

// returns c© [x:I -> 6]

//----- seq-fifo -----//

typeOf( lam(x, Tr(x-1, Sym(x-1,1) & (fifo^x))) )

// returns ∀x:I . 1 -> 1 [type obtained only after constraint solving]

typeTree( lam(x, Tr(x-1, Sym(x-1,1) & (fifo^x))) )

// returns ∀x:I . x1 -> x2 | ((x1 + (x - 1)) == ((x - 1) + 1))

// & ((x2 + (x - 1)) == x) & ((1 + (x - 1)) == x) & (x1 >= 0) & (x2 >= 0)

//----- zip and sequencer -----//

val zip = ....

typeOf( zip )

// returns ∀n:I . 2 * n -> 2 * n

val sequencer = ....

typeOf( sequencer )

// returns ∀n:I . n -> n

Listing 1. Calculating the type of connectors using our tools.

5 https://github.com/joseproenca/parameterised-connectors

220



This implementation includes a simple domain specific language to specify
connectors, making them similar to the syntax used throughout this paper. It
provides three main top-level functions: typeTree, typeOf, typeInstance, and
typeSubstitution. The first creates the derivation tree (if it exists); typeOf
simplifies the constraints, uses the unification algorithm, invokes the constraint
solver, and returns the most general type found; and typeInstance and type-
Substitution perform the same steps as typeOf, but the former returns the
result of the constraint solving phase (even if the type is not the most general
one) and the latter returns the substitutions obtained by the unification and
the constraint solver phases. Hence the result of typeInstance never includes
constraints. The constraint solving phase uses the Choco solver6 to search for
solutions of the constraints.

Observe that the resulting type instance and substitution of the first connec-
tor start with c©—this means that the resulting type is a concrete instance of a
type, i.e., the constraint solving phase found more than one solution for the vari-
ables of the inferred type (after unification). However, if we would ask for a type
instance of (λx :N ·fifox|x > 5)(7), for example, the result would be also its (gen-
eral) type 7 → 7, without the c©. Typing the connector (λx :N · fifox|x > 5)(2)
gives a type error, because the constraints are not satisfied.

6 Related Work

Algebras of connectors The usage of symmetric monoidal categories to
represent Reo connectors (and others) has been introduced by Bruni et al. [5],
where they introduce an algebra of stateless connectors with an operational se-
mantics expressed using the Tile Model [7]. The authors focus on the behavioural
aspects, exploiting normalisation and axiomatisation techniques. An extension
of this work dedicated to Reo connectors [3] investigates more complex seman-
tics of Reo (with context dependent connectors) using the Tile Model. Other
extensions to connector algebras exist. For example, Sobocinski [14], and more
recently Bonchi et al. [4], present stateful extensions to model and reason about
the behaviour of Petri Nets and of Signal Flow Graphs, respectively. The latter
also describes the usage of traces (Tr) as a possible way to specify loops in their
algebra. In all these approaches, interfaces (objects of the categories) can be
either input or output ports, independently of being on the left or right side of
the connector (morphism), focusing on the behaviour of connectors instead of
how to build families of these connectors.

In our work we do not distinguish input from output ports, assuming data
always flows from left to right, and use traces to support loops and achieve the
same expressivity. As a result, we found the resulting connectors to be easier to
read and understand. For example the connector fifo has type •◦ → 0 in Bruni
et al.’s algebra, meaning that the left side has 2 ports: an input • and an output
◦ one. Composing two fifos in sequence uses extra connectors (called nodes) and

6 http://choco-solver.org
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has type 0 → ◦•—for a more complete explanation see [7]. Indeed, our algebra
has stronger resemblances with lambda calculus (and with pointfree style in
functional programming [8]), facilitating the extension to families of connectors,
which is the main novelty of this work.

Analysis of software product lines In the context of software product
lines Kästner et al. [9], for example, investigated how to lift a type-checking
algorithm from programs to families of programs. They use featherweight Java
annotated with constraints used during product generation, and present a type-
checking approach that preserves types during this product generation. Their
focus is on keeping the constraints being solved as small as possible, unlike
previous approaches in the generative programming community (e.g., by Thaker
et al. [15]) that compile a larger global set of constraints. Many other verification
approaches for software product lines have been investigated [12,1,16,6]. Post
and Sinz [12] verify families of Linux device drivers using the CBMC bouned
model checker, and Apel et al. [1] verify more general families of C programs
using the CPAchecker symbolic checker. More recently Thüm et al [16] presents
an approach to use the KeY theorem prover to verify a feature-oriented dialect
of Java with JML annotations. They encode such annotated families of Java
programs into new (traditional) Java programs with new JML annotations that
can be directly used by KeY to verify the family of products. Dimovski et al [6]
take a more general view and provide a calculus for modular specification of
variability abstractions, and investigate tradeoffs between precision and time
when analysing software product lines and abstractions of them.

Our approach targets connector and component interfaces instead of typed
languages, and explicitly uses parameters that influence the connectors. Conse-
quently, feature models can contribute not only with feature selections but also
with values used to build concrete connectors. Our calculus is simpler than other
more traditional programming languages since it has no statements, no notion
of heap or memory, nor tables of fields or methods.

7 Conclusion and Future Work

This paper formalises a calculus for connector families, i.e., for connectors (or
components) with an open number of interfaces and restricted to given con-
straints. A dependant type system guarantees well-connectedness of such fami-
lies, i.e., that interfaces of subconnectors can be composed as long as the param-
eters obey the constraints in the type. These constraints are reducible to non-
linear constraints on integers when considering untyped ports (only the type 1),
in which case arithmetic properties and integer constraint solvers can be used to
check the constraints under which a connector family is well-connected.

In the future we will investigate connector families where the type of the data
passing through the ports is also checked. Finally, we also plan to investigate how
to reduce the size of the constraints being solved, by using the more dedicated
contexts while building the type tree instead of collecting the constraints for a
follow-up phase, similarly to the work of Kästner et al. [9].
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Abstract An important problem in Model Driven Engineering is main-
taining the correctness of a specification under model transformations.
We consider this issue for a framework that implements the transforma-
tion chain from the modeling language SLCO to Java. In particular, we
verify the generic part of the last transformation step to Java code, in-
volving change in granularity, focusing on the implementation of SLCO
communication channels. To this end we use a parameterized modular
approach; we apply a novel proof schema that supports fine grained con-
currency and procedure-modularity, and use the separation logic based
tool VeriFast. Our results show that such tool-assisted formal verifica-
tion can be a viable addition to traditional techniques, supporting object
orientation, concurrency via threads, and parameterized verification.

1 Introduction

Model-Driven Software Engineering (MDSE) [18] is a methodology that recently
gained popularity as a method for efficient software development. Constructing
a model enables the developer to deal with difficult aspects at a higher and less
complex level of abstraction. Transformations are used to create new models,
source code, test scripts and other artifacts. By shifting the focus from the
code to the model, MDSE allows to tackle defects in the software already in the
modeling phase. Resolving errors in the early stages of the software development
process reduces the costs and increases the reliability of the end product.

An important question is whether transformations are correct. Various types
of correctness are relevant for model transformations, such as type correctness
and correspondence correctness [22]. In earlier work, we have addressed how
to determine that model-to-model transformations preserve functional proper-
ties [29,28,30]. In this paper, we focus on checking that model-to-code transfor-
mations preserve the behavioural semantics of the model [22]: If we have proven
that certain functional properties hold in a model, such as the absence of data
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races or deadlocks, how can we ensure that those properties still hold in the
generated source code?

Specifically, we focus on models of systems consisting of concurrent, inter-
acting components, and wish to transform those models into multi-threaded
software. For compositional models, an Object Oriented (OO) implementation
language seems a natural choice, since it allows us to map components to objects.
We have chosen Java. The modelling language we use is called SLCO (Simple
Language of Communicating Objects) [1]. SLCO models consist of components
that communicate through channels. Each component is described in terms of a
finite number of concurrently operating state machines that can share variables.
After a chain of transformations of SLCO models, in which incrementally more
concrete information about the specified system can be added, multi-threaded
Java code should be generated based on the last SLCO model, in which each
SLCO state machine is mapped to its own thread.

SLCO has a coarse granularity that supports thinking about concurrency at
a convenient high level of abstraction. On the other hand, the generated code
implements concurrency through multi-threading, with a level of granularity
that is much more fine-grained. This approach facilitates the development of
correct, well-performing, complex software. However, the code generation step
is challenging to implement, since the transition from coarse to fine-grained
concurrency needs to be done in a way that correct and well-performing software
can be generated.

Our approach to setting up the model-to-code transformation step is to iden-
tify the concepts in SLCO that are model independent on the one hand, and
model dependent on the other. The model independent concepts can be trans-
formed to Java once, and from that moment on referred to in all code generated
from specific SLCO models. An example of a model independent SLCO con-
cept is the communication channel, while state machines are model dependent
concepts, since their structure differs from one model to another.

For the specification of the behaviour of Java objects, we opt for using sepa-
ration logic [23], since it allows us to specify behaviour in a way independent of
the implementation language. We require concurrency, so we actually work with
the version of separation logic with fractional permissions. Full verification of
semantics preservation of model-to-code transformations then involves establish-
ing that these specifications correspond with the semantics of the corresponding
SLCO constructs. For this to be possible, we require a modular approach, in
which the specification of constructs can be used for the verification of code in
which those constructs play a role.

As a first step, in this paper, we focus on how to formally specify the be-
haviour of model independent concepts, such that modular verification of code
using those concepts is possible. In fact, using such specifications allows the
verification of code without relying on the actual implementation of the model
independent concepts, thereby truly realising a modular way of working. Our
aim is to show that modular verification of model-to-code transformations of
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multi-component systems is necessary and feasible, and we demonstrate how
this can be concretely done.

The model independent concepts are implemented in what we refer to as
generic code. To verify this code, a theorem proving approach is called for, be-
cause the generic code contains parameters that only get concrete values when
used in specific code derived from particular input models. Furthermore, since
the generic code has fine-grained concurrency, we require procedure-modularity,
and we use the approach from [16] that supports this. Tool-wise, we require
a verification tool that supports OO code, concurrency and separation logic
with fractional permissions, leading to the choice of VeriFast [15]. A procedure-
modular approach can be achieved by using ghost code and abstract predicates.

Contributions. First of all, we introduce a new modular specification schema
to specify the behaviour of modelling constructs in a setting where 1) fine-grained
parallelism is used, and 2) the environment is general, i.e., we do not need to
know anything about the environment to specify the constructs. Compared to
earlier work, our schema allows a better abstraction from the implementation
details of the methods being specified.

We demonstrate our approach by specifying and verifying a representative
part of the generic code, namely the communication channel. This shows the
feasibility of the approach, but also that judicious choices of implementation
language, specification language, verification approach and tooling are required.

As mentioned in [22], proving correctness of a program is not as complex
as proving correctness of a transformation that produces programs. By making
a distinction between generic and specific code, the complexity of proving the
correctness of model-to-code transformations can be lowered. Generic code can
largely be treated as any other program, apart from the fact that it raises new
concerns regarding the larger program context in which code constructs can be
placed; these concerns are covered in this paper. As a result, the remaining proof
obligations for the transformation as a whole can be simplified; once we turn our
attention to the specific code, we can directly use the specifications of the generic
code constructs. With respect to related work (Section 6), this is a novel way to
address the correctness of model-to-code transformations.

Section 2 introduces SLCO and explains how SLCO models are transformed
to Java code. Section 3 explains the essentials of separation logic. In Section 4,
the new modular specification schema is described, and in Section 5 it is demon-
strated how to apply the schema to specify and verify a Java implementation
of the SLCO channel datatype using VeriFast. Section 6 discusses related work,
and Section 7 contains our conclusions and pointers to future work.

2 SLCO and Its Transformation to Java

In SLCO, systems consisting of concurrent, communicating components can be
described using an intuitive graphical syntax. The components are instances
of classes, and connected by asynchronous channels, over which they send and
receive signals. They are connected to the channels via their ports.
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SendRec
m == 6;

send S("a") to InOut;
receive T(s) from InOut

Rec2
receive Q(m | m >= 0) from In2;

m := m + 1

Rec1
receive P([[false]]) from In1

Com0

Com1

send P(true) to Out1

Com2

after 5 ms

send Q(5) to Out2;
receive S(s) from InOut;

send T(s) to InOut

Figure 1. Behaviour diagram of an SLCO model

The behaviour of a
component is specified
using a finite number of
state machines, such as
in Figure 1, where two
components are defined
(the two main rectan-
gles). The parallel exe-
cution of those machines
is formalised in the form
of interleaving seman-
tics. Variables either be-
long to the whole com-
ponent or an individual
state machine. The variables that belong to a component are accessible by all
state machines that are part of the component (for instance, variable m in the
left component of Figure 1). Each transition has a source and target state, and a
list of statements that are executed when the transition is fired. A transition can
be fired if it is enabled, and it is enabled if the first of the associated statements is
enabled. If a transition is fired but subsequent statements are blocked, the tran-
sition blocks until they become enabled. SLCO supports a variety of statement
types. For communication between components, there are statements for sending
and receiving signals over channels. The statement send T (s) to InOut , for in-
stance, sends a signal named T with a single argument s via port InOut . Its coun-
terpart receive T (s) from InOut receives a signal named T from port InOut
and stores the value of the argument in variable s. A send statement is enabled
if the buffer of the channel is not full, and a receive statement is enabled if there
is a message in the buffer.

Statements such as receive P ([[false]]) from In1 offer a form of conditional
signal reception. Only those signals whose argument is equal to false will be
accepted. Another example is the statement receive Q(m | m ≥ 0) from In2 ,
which only accepts those signals whose argument is greater than or equal to 0.
For the above statements to be enabled, there must be a message available in
the channel buffer satisfying the conditions.

Boolean expressions, such as m==6 , denote statements that are enabled iff
the expression holds. Time is incorporated by means of delay statements. For
example, the statement after 5 ms blocks until 5 ms have passed since the
moment the source state was entered. Assignment statements, such as m :=
m + 1 , are used to assign values to variables. They are always enabled.

Our approach to derive executable code from an SLCO model is as shown in
the activity diagram of Figure 2: generic code constructs are used for the basic
elements in SLCO, i.e., for channels (synchronous and asynchronous), states,
transitions, and a mechanism to move between states by performing transitions.
A model-to-code transformation takes an SLCO model as input and produces
model specific Java code that refers to the generic constructs as output. There
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Transform 
SLCO to Java
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refers to

Combine

Executable Java 
code

Figure 2. Activity diagram of the transformation process from SLCO to Java

is a one-to-one mapping between SLCO state machines and Java threads. Fi-
nally, this specific code is combined with the generic code to obtain a complete,
executable implementation that should behave as the SLCO model specifies.

3 Separation Logic

Separation logic [20,23] builds upon Hoare logic [13] and in the context of con-
current programs also on the Owicki-Gries method [21].

We assume a Java-like OO programming language that supports aliasing and
references: allocation and deallocation of heap addresses (memory cells), as well
as assignments to and from a heap memory cell. The main motivation behind
the separation logic is to describe in a succinct way the state of the heap during
program execution.

A separation logic assertion is interpreted on a program state (s, h), where
s and h are a store and a heap, respectively. The store is a function mapping
program variables to values and the heap is a partial map from pairs of ob-
ject IDs and object fields to values. A value is either an object or a constant.
To capture the heap related aspects, separation logic extends the syntax and
semantics of the assertional part of Hoare logic. Separation logic adds heap op-
erators (expressions) to the usual first order assertions of Hoare logic. The basic
heap expressions are emp, i.e., the empty heap, satisfied by states having a heap
with no entries, and E 7→ F (read as “E points to F ”), i.e., a singleton heap,
satisfied by a state with a heap consisting of only one entry at address E with
content F . For instance, o.x 7→ v means that field x of object o has value v. Two
heap expressions H1 and H2 corresponding to heaps h1 and h2, respectively, can
be combined using the separating conjunction operator ∗, provided h1 and h2
have disjoint address domains. Expression H1 ∗H2 corresponds to the (disjoint)
union h1 ] h2 of the heaps. Note that H1 and H2 describe two separate parts of
the heap, h1 and h2, respectively. In contrast, the standard conjunction p1 ∧ p2,
where p1 and p2 are separation logic formulae, corresponds to the whole heap
satisfying both p1 and p2. Because of the domain disjointness requirement, the
separation logic formula (o.f 7→ 10) ∗ (o.f 7→ 10) evaluates to false, whereas
(o.f 7→ 10 ∧ o.f 7→ 10) is equivalent to (o.f 7→ 10).
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Like in Hoare logic, the triple {P}C{Q}, where C is a (segment of) a program
and P and Q are assertions describing its pre- and post-condition, respectively,
only concerns partial correctness; termination of C needs to be proven separately.

Separation logic adds to the standard rules (axioms) of the Hoare framework
axioms for each of the new statements - allocation, deallocation, and assignments
involving the heap cells. An important characteristic of separation logic is tight
interpretation.

In some cases it is needed to embed a precise specification of a program
segment C into a more general context. A specific axiom that allows this by en-
larging the specification of a program segment C with an assertion R describing
a disjoint heap segment which is not modified by any statement in C, is the
frame rule: 1

In a concurrent setting, the programming language is extended with a fork
statement, allowing to run program components in separate threads. For syn-
chronized access to global objects, semaphores are added, together with the
corresponding methods acquire and release.

The Owicki-Gries method extends the Hoare approach to concurrent pro-
grams preserving modularity. The first idea is to capture component behavior
with non-shared ghost variables enabling separate proofs of concurrent compo-
nents (for more on ghost variables, see Section 4). The second idea is to link
shared resource and ghost variable values through an invariant that holds out-
side critical regions [21]. A resource A is a set of heap locations, and IA is its
associated invariant. The crucial idea is that each component may update or ac-
cess these locations only within critical regions [11,14] in which the component
has exclusive access to the locations. Although IA may be violated within the
critical region, it is guaranteed to hold at the beginning and at the end of the
critical region. This is reflected in the rules for acquire and release:

{emp} s.acquire() {IA(s)}
{IA(s)} s.release() {emp}

The above described approach allows compositional verification. Each method
m belonging to a class C is verified as a sequential program considering the in-
variants as extra constraints. Class C is considered verified when all its methods
are verified. Since the program can be seen as a combination of classes and
declarations, the whole program is verified when all its classes are verified.

One of the central concepts in concurrent separation logic is ownership. Due
to tight interpretation, separation logic assertions can describe precisely the heap
“footprint” of a given program C, i.e., the parts of the heap which C is allowed
to use. Let l be a program component location and E a heap address. The com-
ponent owns address E at location l iff E is contained in a heap corresponding
to an assertion H which is true at location l. If E 7→ F is part of the heap
corresponding to H, then this can be seen as an informal permission [5] for the

1 Here we disregard the usual side condition of the frame rule, since we assume a
Java-like programming language not supporting global variables.
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verified component to read, write or dispose of the contents of the heap cell at
address E.

Partial permissions are introduced to allow shared ownership of variables.
Ownership is split into a number of fractional permissions, each of which only
allows read only access. Expression E 7−→ F denotes permission 1, i.e., exclusive
ownership, whereas a fractional permission is expressed as [z]E 7−→ F with 0 <
z < 1. Expression [1]E 7−→ F is equivalent to E 7−→ F . Permissions can be split and
merged during a proof. For instance, two fractional permissions can be merged
according to the following rule: [z]E 7−→ F ∗ [z′]E 7−→ F , where z+ z′ ≤ 1, implies
[z + z′]E 7−→ F . One acquires full ownership (and therefore write access) in case
z + z′ = 1. The split rule is analogous.

We use fractional permissions to enforce the syntactic rules and side condi-
tions of Owicki-Gries on the use of the (global) real and ghost variables. For
instance, by acquiring a semaphore, a component acquires the semaphore in-
variant. The semaphore invariant provides full permission to change the real
variables and the ghost variables associated with the component. A component
always holds a fraction of the permission for its ghost variables, thereby ruling
out that other components change them. When releasing the semaphore, the
component also releases the acquired (partial) ownerships.

4 Modular Specification Schema

Our aim is to specify modelling constructs and verify the implementation of
those constructs in a modular way, meaning that each construct and its imple-
mentation should be independently specifiable and verifiable. The benefits of a
modular approach are 1) that it will scale better than a monolithic approach
and 2) that once a construct has been specified, we can abstract away its imple-
mentation details when verifying properties of the system.

It is crucial that implementations of constructs do not need to be verified
again when their context changes. Because of this, and the fine-grained nature
of the generic code, standard methods like Owicki-Gries do not suffice. In [16], a
modular specification schema was proposed to solve this problem. In this section,
we introduce an improved version of this modular approach which, compared
to [16], provides a better abstraction from the implementation of the verified
method.

As already mentioned, the Java methods in our transformation framework
implement fine-grained parallelism. This means that each method may acquire
and release access to multiple critical regions (CR) during its execution, instead
of following a coarse-grained approach in which the complete method is executed
in one big CR. As CRs tend to form performance bottlenecks in software, a fine-
grained approach tends to decrease the level of dependency between threads in
a multi-threaded system, and thereby increase the overall performance.

In order to verify methods with fine-grained parallelism, so-called ghost code
must be inserted as part of the annotations. To see how this mechanism of code
insertion works, we consider a method m belonging to a class C instantiated in
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an object o. We want to give a specification of m in the form of a standard Hoare
logic triple {P}o.m{Q}. Under fine-grained parallelism one cannot formulate P
and Q in terms of the actual fields determining the state of o. For instance,
consider method send(msg, G) that sends a message msg to a channel queue q (q
is a field of C), as in Listing 1. At line 8, the piece of code G given as a parameter
to send is inserted.

Listing 1. A fine-grained send operation
1 class C
2 queue q
3 semaphore s
4 method send ( msg , G )
5 begin
6 s . acquire ( )
7 q := q + msg
8 G
9 s . release ( )

10 end

In a concurrent setting, multiple threads may send messages to the queue of
a single instance of C. In that case, q may be changed by some other send call
between the call to send(b) leaving the CR protecting q (line 9) and send(b)
returning the control to the calling client program (line 10). We cannot claim
that once send(a) is finished, the new content of q is q+a, where + indicates
concatenation. This is analogous to Owicki-Gries, where global variables altered
by multiple modules cannot be used directly to specify a module.2

To resolve this, ghost variables (also called logical or auxiliary variables) are
added to the program. Ghost variables are write-only, i.e., the instrumented
program can change them, but not read them. Hence, they do not change the
control flow of the program and are only auxiliary verification devices. Each ghost
variable is owned by a particular process, and only this process can potentially
change its content. To illustrate the use of ghost variables, let us assume that
send is used by a client program as shown in Listing 2.

Listing 2. A client using the send method.
1 o := New C ( )
2 o . send ( a ) | | o . send ( b )

Suppose we want to prove that if in the beginning of the program len(q) = 0
holds, where len gives the length of the queue, then at the end, len(q) = 2.
We specify the two instances of send by introducing ghost variables y and z
to capture the local effect on the length of q in the left and right method call,
respectively. Resource invariant IA ≡ len(q) = y + z captures how these local
effects relate to the global resource. Now we can specify send(a) with {y =
0}send(a){y = 1} and send(b) with {z = 0}send(b){z = 1}. Finally, we define
G ≡ y := 1 for send(a) and G ≡ z := 1 for send(b), to update y and z,
respectively, at line 8 in Listing 1 when send is executed.
2 In the classical Owicki-Gries framework this is directly forbidden by the interplay of
the syntactic rules of the usage of the global variable and the side conditions of the
axioms for CR and parallel composition.
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With verification axioms similar to Owicki-Gries, it can be proved that these
assertions indeed confirm the correctness of the client property. In particular,
the conjunction of the postconditions of send(a) and send(b), and IA, i.e., y =
1 ∧ z = 1 ∧ len(q) = y + z, implies the desired client postcondition len(q) = 2.

Passing corresponding ghost codes G to instances of m allows for abstrac-
tion and parallelism, but it does not make the approach modular. Each context
and/or property likely requires different ghost variables, and hence different P ,
Q, IA, and G. Suppose that we want to verify a property about the content of
q using a function cnt mapping the queue content to a set of messages. Specif-
ically, we want to prove that if in the beginning, cnt(q) = ∅, then at the end,
cnt(q) = {a, b}. In this case, our ghost variables range over sets of messages, and
the specifications must be adjusted accordingly, i.e., {y = ∅}send(a){y = {a}},
{z = ∅}send(b){z = {b}}, IA ≡ cnt(q) = y ∪ z, and G ≡ y := {a} and
G ≡ z := {b} for send(a) and send(b), respectively. Even if we had a library of
predicate sets and ghost code blocks, in general we would not be able to cover
all possible contexts in which the generic code, i.e., m, could be used.

Greater generality can be achieved by a schema along the lines of [16] in
which P , Q, IA, and G are parameters of the specification of m. The schema
imposes some constraints on these parameters which become proof obligations
when verifying code involving m. Under these constraints, m needs to be ver-
ified only once. For each new context, the client only needs to verify that the
contraints hold. We propose a new modular specification schema (MSS) that
allows further abstraction from the implementation details of m, by supporting
parameterization based on CRs. Unlike in [16], the semaphores that implement
the CR as well as the names of the fields that determine the state of the object
(s and q, resp., in the send example) remain absent from the specification. As a
result one retains the flexibility of the OO approach. For example, if the imple-
mentation of the CR is changed such that locks are used instead of semaphores,
the specification can remain the same.

We proceed by giving the intuition behind the MSS. We first establish the
relationships between the parameters P , Q, IA, and G, that need to hold in
order for the specification to be correct. Later we lift these relationships to the
level of the whole method m to formulate the MSS.

Listing 3. A semaphore based implementation of a CR
1 {P}
2 s . acquire ( )
3 {IA ( s ) ∗ P}
4 {O ( v ) ∗ I ( v ) ∗ P}
5 C
6 {O ( post ( v ) ) ∗ I ( v ) ∗ P}
7 G
8 {O ( post ( v ) ) ∗ I ( post ( v ) ) ∗ Q}
9 {IA ( s ) ∗ Q}

10 s . release ( )
11 {Q}

Assume that the body ofm consists of only a single CR implemented by using
semaphore s. The CR is of the form s.acquire() C s.release() as given in
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Listing 3. Without loss of generality, let us assume that the CR protects a single
field f of an instance o of class C. Field f can be changed only within the CR.

When establishing the relationships, we are guided by the correctness re-
quirements for the annotation of Listing 3 in the familiar Hoare logic/Owicki-
Gries style. The validity of P and Q at lines 1 and 11, respectively, implies that
IA(s)∗P and IA(s)∗Q hold at lines 3 and 9, respectively (we write IA(s) instead
of just IA to emphasize that it is associated with s). This follows from the rules
from Section 3 (for acquire and release combined with the frame rule), and
the fact that P and Q do not refer to s and hence involve parts of the heap
disjoint from the parts affected by acquire and release. This is analogous to
the proof rule for the CR in Owicki-Gries.

To capture the environment constraints, next to ghost variables, IA(s) may
also depend on o.f. To avoid directly referring to f and thereby making the
approach modular, we introduce a so-called payload invariant I, parameterized
with a ghost variable v. In the example of Listing 2, IA(s) ≡ len(q) = y + z
would be substituted by I(v) ≡ len(v) = y + z. To link the actual field f with
its ghost counterpart v we use predicate O(v) (for the earlier send example, we
could define O(v) ≡ q = v). O(v) is an abstract predicate local to o that is not
visible for the client. By defining IA(s) = ∃v.O(v)∗I(v), we circumvent the need
to refer to o.f in the client invariant.

Line 4 in Listing 3 is obtained by substituting O(v) ∗ I(v) for IA(s) at line
3. Since C affects only actual variables, P holds also in the postcondition of C
at line 6. However, since the actual variables have changed while ghost variable
v remains the same, predicate O holds only for an adjusted value of v given by
post(v). In our example, post(v) ≡ len(v) + 1. G only affects y and z, so after
G, O(post(v)) remains valid. So, in order to recover the invariant IA, G at line
7 should be chosen such that it modifies the ghost variables occurring in I(v)
and P in such a way that I(post(v)) becomes true and P is transformed to Q
(line 8). Proving that G indeed has this property remains a proof obligation for
the client program calling m and as such becomes a premise of our schema. It
is easy to check that this constraint is satisfied by all instances of send in the
running example for both client properties. Finally, line 9 follows directly from
line 8 by the definition of IA(s).

The Modular Specification Schema By summarizing the constraints on the
various elements of the annotation, and lifting them to the level of method m,
we obtain the MSS:

∀v • {P ∗ I(v)} G {Q(res(v)) ∗ I(post(v))}
{∃v •O(v) ∗ [π]o.A(I(v)) ∗ P} r := o.m(G) {∃v •O(v) ∗ [π]o.A(I(v)) ∗Q(r)}

For simplicity, we assume that m has no parameters besides G. However,
additional parameters can be captured in the usual way for procedure verification
rules in Hoare logic. We also assume that m returns a result res(v) immediately
after leaving the CR, that is assigned to variable r. In general, Q depends on r.
Both res(v) and post(v) are fixed by the supplier of m.
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Predicate A links semaphore s with the payload invariant I. Both A and
O are abstract predicates in the sense that the client does not need to know
their definition since they are local to o. For the send example, A would state
that there is a semaphore s that is properly initialized and it associates to A
a semaphore invariant IA(s) (formed using I(v) as described earlier). These
implementation details, including s, are hence not visible to the client calling m.
Finally, π is an arbitrary fraction denoting a fractional permission for A.

Note that MSS is not an axiom or a proof rule of separation logic, since for any
correct module it can be derived from other axioms and rules. The correctness
of MSS can be verified using the annotation in Listing 3.

MSS can be seen as a means to divide the proof obligations between the
client and the supplier of m. The schema is implicitly universally quantified over
P , Q, I, and G. Note that post and res are fixed by the supplier and that they
implicitly define the effect of C on o.f in a sequential environment. On the
other hand, the client is free to use any predicates P , Q, I, and G satisfying
the premise of MSS. For any such predicates, the supplier guarantees that the
implementation of m satisfies the triple in the consequent of MSS.

The premise of MSS ∀v.{P ∗ I(v)} G {Q(res(v))∗ I(post(v))} is analogous to
the premise of the Owicki-Gries CR axiom {P ∗ IA(s)} C {Q(r) ∗ IA(s)}. MSS,
however, shifts the verification from the actual code C and invariant IA to the
ghost code G and the payload invariant I. Although C does not appear in MSS,
its specification is reflected in v, post(v) and res(v). Although G has to reflect
all important aspects of each call of o.m, the method is still to a great extent
modular since the implementation and verification of the program text of o.m
remains completely independent of the call of o.m which is invoked.

The soundness of the modular schema follows from the same arguments pre-
sented in [16].

5 Specifying and Verifying the SLCO Channel

In this section we present the specification and verification of an essential part
of the generic code for our SLCO-to-Java transformation, namely the commu-
nication channel. We specify the channel for use in a generic, multi-threaded
environment. Using VeriFast, we verify the absence of race conditions and dead-
locks, and show how to prove properties of clients using the channel.

SLCO models use asynchronous non-blocking lossless channels that can hold
a predefined maximum number of messages. The channel datastructure provides
two operations, send and receive, to add and remove messages. It has a FIFO
structure, i.e., messages are added to the end and removed from the front of
a queue. Provided that the client program invoking a channel operation has
exclusive access to the channel, the specification of the operations is as follows.
The send operation has one parameter msg, the message that is being sent. If
the contents of the channel is q and it is not full when send is started, then
after execution of send the contents of the channel is q + msg, where + denotes
concatenation of sequences of messages. Furthermore, send returns a Boolean
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result indicating whether or not the operation was successful; if the channel
is already full when send is started, false is returned. Whenever receive is
started and the channel has contents msg + q, then the channel’s new contents
after execution of receive, provided that any provided conditions hold, is q,
and message msg is returned as a result. If the channel is empty when receive
starts executing, then receive is blocked until it succeeds to remove a message.
Since the channel is used in a multi-threaded environment, adding and removing
messages should be done atomically.

We illustrate our modular approach described in Section 4 on the send
method of the channel implementation. In VeriFast, each Java source code file
being verified is linked to a specification file only containing (abstract) predicates
and specifications of Java methods and ghost functions. The VeriFast specifica-
tion of the method following MSS is given in Listing 4.

Listing 4. Part of the channel specification
1 public f ina l c lass Channel {
2 // . . .
3
4 boolean send ( String msg )
5 /∗@
6 r e qu i r e s
7 [ ? p i ]A(? I ) &∗&
8 is_G(?G_, th i s , I , msg , ?P, ?Q) &∗& P() ;
9 @∗/

10 /∗@
11 ensures
12 [ p i ]A( I ) &∗& Q( r e s u l t ) ;
13 @∗/
14 // . . .
15 }

The VeriFast specific text, i.e., specifications and ghost variable declarations,
is inside special comments delimited by @. The pre- and postconditions that form
the contract are denoted by the keywords requires and ensures, respectively.
Component predicates of the pre- and postcondition are glued by the separating
conjunction operator denoted by &*&. Predicates A, I, P, and Q correspond to
their namesakes in the MSS, whereas the assertion is_G implements the passing
of the ghost code G into the method. Both [?pi] and [pi] correspond to the
fractional permission [π]. The question mark ? in front of a variable means that
the value of the variable is recorded and that all later occurrences of that variable
in the contract must be equal to the first occurrence. For instance, in Listing 4,
the value of the fractional permission pi in the precondition must be the same
as the one in the postcondition (as also required in the MSS).

Predicates P, Q and is_G are left undefined and are supposed to be provided
by the client. More precisely, a lemma function G is supplied by the client based
on which VeriFast automatically creates the predicate is_G. A VeriFast lemma
function is a method without side effects which helps the verification engine. The
contract of a lemma function corresponds to a theorem, its body to the proof,
and a lemma function call to an application of the theorem. Listing 5 contains
the specification of G that corresponds to the ghost statement block G.
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Note that the specification of G in Listing 5 corresponds to the premise of
MSS, where post(v) specifies that if res = true, msg has been added to the
channel, and otherwise it has not (line 4).

Listing 5. A lemma function specifying the ghost statement block G
1 /∗@
2 typede f lemma void G( Channel c , p r ed i c a t e ( l i s t <Object >, i n t ) I ,

S t r ing msg , p r ed i c a t e ( ) P, p r ed i c a t e ( boolean ) Q) ( boolean r e s ) ;
3 r e qu i r e s P( ) &∗& I (? items , ?qms) ;
4 ensures Q( r e s ) &∗& I ( r e s ? append ( items , cons (msg , n i l ) ) :

items , qms) ;
5 @∗/

Method send is part of the class Channel (Listing 6), implementing the
SLCO channel construct. Class Channel contains three fields: the list itemList
implementing the FIFO queue, semaphore s that is used to implement access to
the CR within the operations, and queueMaxSize defining the maximum channel
capacity. For verification purposes we add the ghost field inv which is used to
keep track of the invariant.

Semaphore invariant I_A, corresponding to IA in Section 4, is given at lines
3–5 in Listing 6. The invariant is defined by means of a predicate constructor
parameterized with the payload invariant I. Corresponding to the definition of
IA, in I_A, it is checked that for ghost variables items and qms, i.e., the contents
of the item list and the maximum number of messages, respectively, I holds.
The question mark ? is used to record the value of the variable following it, for
use later on in the predicate. Operator 7→ is written in VeriFast as |->, and the
expression of the form [f] denotes fractional ownership with fraction f. When
f = 1, the fractions are omitted, and an arbitrary fraction is denoted as [_].

In predicate O (line 12), as explained earlier, the links are established between
ghost variables and fields. Its first conjunct channel.itemList |-> ?itemList
implies exclusive ownership of the field itemList and at the same time that
the value of itemList is recorded for later use in the contract. Expression
itemList.List(items) states the fact that itemList is a list with elements
items. The final conjunct links queueMaxSize to ghost variable qms.

Listing 6. A specification of the Channel class
1
2 /∗@
3 pred icate_ctor I_A( Channel channel , p r ed i c a t e ( l i s t <Object >, i n t ) I )

( ) =
4 channel .O(? items , ?qms) &∗& I ( items , qms) ;
5 @∗/
6
7 public f ina l c lass Channel {
8 List itemList ;
9 Semaphore s ;

10 int queueMaxSize ;
11 //@ inv inv ;
12 //@ pred i c a t e O( l i s t <Object> items , i n t qms) = th i s . i t emLi s t |−>

? i temLi s t &∗& itemLi s t . L i s t ( i tems ) &∗& th i s . queueMaxSize
|−> qms ;

13 //@ pred i c a t e A( p r ed i c a t e ( l i s t <Object >, i n t ) I ) = . . . &∗& s |−>
?sem &∗& [_] sem . Semaphore (I_A( th i s , I ) ) ;

14 }
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We use the VeriFast ownership concept to implement syntactic restrictions
on the variables. In particular, we need to ensure that the fields like itemList
can be modified only in the CR implemented by semaphore s and that the ghost
variables are modified exclusively by at most one method, in this case send.

Predicate A is given at line 13 in Listing 6. Like its MSS counterpart A, it is
parameterized with the payload invariant I (corresponding to I in MSS). Besides
some auxiliary conjuncts, it has two conjuncts to associate I_A with s, the first
of which is parameterized with the payload invariant and the object itself.

Listing 7. The annotation of the Channel send method
1 public f ina l c lass Channel {
2 // . . .
3 public boolean send ( String msg )
4 /∗@ requ i r e s . . . ensure s . . . @∗/
5 {
6 //@ open [ p i ]A( I ) ;
7 //@ s . makeHandle ( ) ;
8 s . acquire ( ) ;
9 //@ open I_A( th i s , I ) ( ) ;

10
11 boolean result = itemList . size ( ) < queueMaxSize ;
12 i f ( result )
13 itemList . add ( msg ) ;
14
15 //@ send_( r e s u l t ) ;
16 //@ length_append ( items , cons (msg , n i l ) ) ;
17 //@ c l o s e I_A( th i s , I ) ( ) ;
18 s . release ( ) ;
19 //@ c l o s e [ p i ]A( I ) ;
20 return result ;
21 }
22 // . . .
23 }

Listing 8. Client program specification
1 public c lass Program {
2 //@ s t a t i c i n t sendCount ;
3 //@ s t a t i c i n t rece iveCount ;
4 public Channel c ;
5 public stat ic int messageMaxCount ; // k
6
7 public stat ic void main ( String [ ] args )
8 //@ r e qu i r e s c las s_in i t_token (Program . c l a s s ) &∗&

Program_messageMaxCount (?mmc) &∗& 0 < mmc;
9 //@ ensures Program_messageMaxCount (mmc) &∗& [_]

Program_sendCount (? sc ) &∗& [_] Program_receiveCount (? rc ) &∗&
mmc == sc &∗& mmc == rc ;

10 {
11 // . . .
12 }
13 }

Listing 7 contains the send method with its corresponding full annotation
that further facilitates verification. Since VeriFast does not automatically unfold
predicate definitions, ghost statement open is used to do this, i.e., to replace
the predicate with its definition. In this way the heap chunks of the defini-
tion are made visible to the verifier. The opposite effect is achieved by close
which replaces heap chunks with the corresponding predicate definition. At line
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6 predicate A is unfolded to obtain the predicates needed for acquiring s. After
the acquisition of the semaphore also its invariant I_A is opened at line 9 to get
access to the heap chunks related to itemList and queueMaxSize.

The code segment at lines 11-13, corresponds to C in the MSS, and affects
the “real” variables. The code at lines 15-17 is ghost code. The lemma function
performing the updates of the ghost variables is called at line 15. Annotation of
the receive method can be done in an analogous way.

Class Channel annotated as in Listing 7 is verifiable against its specification
in VeriFast. This means that it is free of deadlocks and race conditions. Those
requirements are not explicitly specified, but are always checked when VeriFast
tries to verify code. The class is now ready to be used by client programs to verify
specific properties, using the pre- and postconditions and the payload invariant.

Listing 9. SenderThread class specification
1 class SenderThread implements Runnable {
2 //@ pred i c a t e P = [_] Program_c (? c ) &∗& [_] c .A( I ) &∗& [_]

Program_sendCount (0 ) &∗& [_] Program_messageMaxCount (?mmc)
&∗& 0 < mmc;

3 //@ pred i c a t e Q = [_] Program_c (? c ) &∗& [_] c .A( I ) &∗& [_]
Program_messageMaxCount (?mmc) &∗& [_] Program_sendCount (? sc )
&∗& mmc == sc ;

4
5 public void run ( )
6 //@ r e qu i r e s P( ) ;
7 //@ ensures Q( ) ;
8 {
9 for ( i = 0 ; i < Program . messageMaxCount ; i++)

10 {
11 /∗@
12 lemma void ghost_send ( boolean r e s )
13 r e qu i r e s . . . ensure s . . .
14 {
15 open P( ) ;
16 . . .
17 }
18 produce_lemma_function_pointer_chunk ( ghost_send ) : G( c

, c l i ent_inv , m, P, Q) ( r e s ) { c a l l ( ) ; } ;
19 @∗/
20 //@ c l o s e P( ) ;
21 boolean success = Program . c . send ( "message" ) ;
22 //@ open Q( suc c e s s ) ;
23 }
24 }
25 }

Next, we discuss how the property ‘if k messages are sent over the channel,
k messages will be received’ can be specified for a program using the channel
via one sending and one receiving thread. First, of all, Listing 8 specifies the
client program we use. In the main method (lines 6 and onwards), an instance
of the channel is created, and a sending and a receiving thread are started,
one sending k, i.e. messageMaxCount, messages, and the other one trying to
receive them. To specify the property, we introduce two new ghost variables for
counting the number of messages (lines 2 and 3). In the precondition of main,
we require that the class has been properly initialized (conjunct 1 at line 8),
link the messageMaxCount variable to the ghost variable mmc, and have an
additional requirement that it is at least equal to 1. In the post-condition, we
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link sendCount and receiveCount respectively to sc and rc, and require that
they are both equal to mmc (line 9).

To determine that the post-condition holds, we need to specify the thread
sending the messages. In Listing 9, at lines 2 and 3, its pre- and post-condition
are specified. In the run method, the messages are sent. For the send call at line
21, we need to provide ghost code G. This is done in lemma ghost_send, where
the ghost variables are updated. This lemma is linked to the call at line 18. The
pre- and post-condition of send are involved at lines 15, 20, and 22.

VeriFast was able to verify the code against its specification, meaning that
the property holds. Besides the environment with two threads, we were also able
to consider an environment consisting of multiple senders and receivers, to verify
that no conflicts can arise in such a setting.

6 Related Work

Much work has been done and continues to be done on the verification of model
transformations. For an overview of the field, see [22]. Here, we mention some
relevant work that also focusses on 1) model-to-code transformations, 2) for-
mal verification of correctness using theorem provers, and 3) correctness as the
preservation of behavioural semantics. The latter seems to be the most relevant
interpretation of correctness mentioned in [22], as it addresses behavioural as-
pects, in our case, for example, race and deadlock freedom of communication
channels, both in SLCO and the Java implementation.

Amphion [2] is a tool to generate code from models of space geometry prob-
lems. It uses a theorem prover automatically, hiding the details from the user,
to create Fortran source code that is correct by construction. Besides address-
ing a different type of models, they do not separately consider the generic code
constructs used. We, on the other hand, have yet to prove correctness of our
entire transformation method. It would be interesting to see if their approach is
to some degree applicable for us.

In [24], the QVT language and transformations are formalised for use with
the KIV theorem prover, to verify Java code generators for security properties
and syntactic correctness. Their approach is operational, but scalability is still a
serious issue. We wonder whether a split similar to ours of the proof obligations
for generic and specific code would improve the scalability.

Other techniques address very similar issues, but work strictly indirectly, i.e.,
they focus on code generated from a concrete model as opposed to transforma-
tions that produce code. We mention some works here, since our work can to
some extent also be considered as indirect (one condition for directness given
in [22] is that the transformation rules are formalised, which we have not done
yet). Blech [4] verifies semantics preservation of a statechart-to-Java transforma-
tion using Isabelle/HOL. In [9,10], annotations are generated together with code
to assist automatic theorem proving. The latter is a very interesting approach
that we may consider for the analysis of our specific code.
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An approach to generate Java code from Communicating Sequential Pro-
cesses (CSP) specifications is described in [27]. The authors describe how they
have verified that a CSP model of their implementation of a channel semanti-
cally corresponds with a simpler CSP model describing the desired functionality
of that channel. First of all, by working from a model describing the implemen-
tation, as opposed to the implementation itself, one still needs to prove that
the model corresponds exactly with the implementation to establish that the
implementation itself is correct. Second of all, it seems that a fully modular ver-
ification approach in the way we wish to have it is not completely possible; for
instance, although it would be possible to use their simpler CSP model of a chan-
nel within detailed implementation-level CSP models of systems using channels,
one could not abstract away the functionality of a channel to the same extent
as when using separation logic if one would like to prove a functional property
referring to communication, but not expressing how the communication itself
should proceed.

Regarding theorem proving, to the best of our knowledge the approach in [16]
was the first one supporting fully general modular specification and verification
of fine-grained concurrent modules and their clients. Compared to the schema
in [16], the MSS we propose imposes conditions on the ghost code instead of
the actual code, and abstracts away the implementation of the protected object
better than [16] does, thereby improving the modular nature of the approach.

An approach comparable to [16] appears in [26] where a new separation logic
is presented with concurrent abstract predicates. Furthermore, in [25] they have
applied their approach to prove correctness of some synchronisation primitives
of the Joins concurrent C# library. As far as we know, the authors do not intend
to eventually use their approach to verify model transformations. It remains to
be investigated whether theirs can be used for that as well.

Another viable option to verify model-to-code transformations seems to be
the use of software model checking techniques, in which a formalization of a
program is checked against an automaton capturing a specification [7,17]. How-
ever, it remains to be investigated whether one can verify implementations of
modelling constructs for general environments as we have done here.

The Java Modelling Language (JML) is a behavioural interface specification
language for Java. An advantage of JML over separation logic is that Java ex-
pressions can be used. Several verification tools have been developed that use
JML as a specification language [6]. The extended static checker for Java (ES-
C/Java2) [8], for instance, was one of the first of such tools. However, it is not
designed to prove full functional correctness, but rather find common program-
ming errors, and hence it is not suitable for our task. Krakatoa [19] and the
Key tool [3], on the other hand, are program verifiers that may be used by
us as alternatives to VeriFast. To which extent this is possible remains to be
investigated.

Adding ownership types [12,33] to Java is a very effective technique to verify
that Java threads always access data correctly, i.e. for which they have acquired
the proper access rights. Such a technique offers an alternative way to verify that
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our channel implementation is always correctly accessed. However, it cannot be
used to verify arbitrary functional properties that may rely on ownership, but
express more than that, such as that some desired behaviour is guaranteed to
always eventually happen. On the other hand, with separation logic, one can
express and verify such properties as well.

7 Conclusions

We introduced an MDSE approach where generated code is separated into a
generic and a model specific part. We presented an application of a modular
approach for the verification of fine grained concurrent code in this context
using the VeriFast tool. This paper showed the ideas behind and the feasibility
of such an approach. With its support of parameterized verification, concurrency
via threads, object-oriented code, and fast verification results,VeriFast was up to
the task - though an experienced user is required. This underlines the relevance
of the idea of re-using generic code that has to be verified only once.

We introduced a novel module specification schema which improves the mod-
ularity of the VeriFast approach. Although the schema was originally developed
having in mind separation logic and VeriFast, it can be straightforwardly adapted
for the standard Owicki-Gries method (assuming extensions with modules) or
similar formalisms for concurrent verification.

Finally, using theorem provers to verify the correctness of code still requires
considerable expert knowledge. We observe that by using model-to-code trans-
formations, experts can focus on proving correctness of those transformations,
thereby relieving developers from the burden to prove that code derived from
specific models is correct.

In future work, we plan to address liveness issues, both in the framework and
as regards verification, and we plan to address verification of the complete model-
to-code transformation, i.e., not only that the used generic code constructs are
correct, but that it is guaranteed that the complete executable code is always
correct. This is quite challenging, since SLCO also supports the timing of ac-
tions. SLCO models with timing can be formally verified by first discretising the
timing [31]. Other relevant challenges and ideas are reported in [32].
Acknowledgments. We would like to thank Suzana Andova for the discussions in
the early phases of the work described in this paper.
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Abstract. Developing distributed applications typically requires to in-
tegrate new code with legacy third-party services, e.g., e-commerce fa-
cilities, maps, etc. These services cannot always be assumed to smoothly
collaborate with each other; rather, they live in a “wild” environment
where they must compete for resources, and possibly diverge from the
expected behaviour if they find it convenient to do so. To overcome these
issues, some recent works have proposed to discipline the interaction of
mutually distrusting services through behavioural contracts. The idea is a
dynamic composition, where only those services with compliant contracts
can establish sessions through which they interact. Compliance between
contracts guarantees that, if services behave honestly, they will enjoy
safe interactions. We exploit a theory of timed behavioural contracts to
formalise, design and implement a message-oriented middleware where
distributed services can be dynamically composed, and their interaction
monitored to detect contract violations. We show that the middleware
allows to reduce the complexity of developing distributed applications,
by relieving programmers from the need to explicitly deal with the mis-
behaviour of external services.

1 Introduction

Modern distributed applications are often composed by loosely-coupled services,
which can appear and disappear from the network, and can dynamically discover
and invoke other services in order to adapt to changing needs and conditions.
These services may be under the governance of different providers (possibly
competing among each other), and interact through open networks, where com-
petitors and adversaries can try to exploit their vulnerabilities.

In the setting outlined above, developing trustworthy services and applica-
tions can be a quite challenging task: the problem fits within the area of computer
security, since we have adversaries (in our setting, third-party services), whose
exact number and nature is unknown (because of openness and dynamicity).
Further, standard analysis techniques from programming languages theory (like
e.g., type systems) cannot be applied, since they usually need to inspect the
code of the whole application, while under the given assumptions one can only
reason about the services under their control.

A possible countermeasure to these issues is to discipline the interaction
between services through contracts. These are formal descriptions of service be-
haviour, in terms of, e.g., pre/post-conditions and invariants [20], behavioural
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types [16], etc. Contracts can be used at static or dynamic time to discover
and bind Web services, and to guarantee they interact in a protected manner:
when a service does not behave as prescribed by its contract, it can be blamed
(and punished) for breaching the contract [30]. Although several models and
architectures for contract-oriented services have been proposed in the last few
years [12,34,36], further evidence is needed in order to put this paradigm at work
in everyday practice. We also believe that contract-oriented services should be
equipped with a formal semantics, in order to make their analysis possible.

Contributions. We formalise, design, implement, and validate a middleware
which uses contracts to allow disciplined interactions between mutually distrust-
ing services. The middleware is designed to support different notions of contract,
which only need to share some high-level features:

– a compliance relation between contracts, which specifies when services con-
forming to their contracts interact correctly. The middleware guarantees that
only services with compliant contracts can interact.

– an execution monitor, which checks if the actions done by the services con-
form to their contracts, and — otherwise — detects which services are cul-
pable of a contract violation.

Building upon these basic ingredients, our middleware extends standard
message-oriented middleware [4] (MOMs) by allowing services to advertise con-
tracts, establish sessions between services with compliant contracts, and inter-
act through these sessions. The execution monitor guarantees that, whenever
a contract is violated, the culprit is sanctioned. Sanctions negatively affect the
reputation of a service, and consequently its chances to establish new sessions.

We explore several ways to validate our middleware. First, we perform some
scalability tests, to measure the execution time of the core primitives as a func-
tion of the number of advertised contracts. Second, we develop a distributed
application (to solve an RSA factoring challenge [29]), involving a master and a
population of workers, some of which do not always respect their contracts. We
show that our service selection mechanism allows to automatically marginalize
the dishonest services, without requiring the master to explicitly handle their
misbehaviour. Third, we use the middleware as a (contract-oriented) commu-
nication layer for a real distributed application, i.e. a reservation marketplace
where service providers can advertise resources, and clients can reserve them. Re-
sources can be of heterogeneous nature, and their usage protocols are specified by
contracts, which are handled by the middleware to guarantee safe interactions.

A public instance of the middleware is accessible from [7], together with all
examples and experiments we carried out, and a suite of development tools.

Structure of the paper. In Section 2 we overview the middleware features. In Sec-
tion 3 we introduce a process calculus to specify services. In Section 4 we illus-
trate the main design choices of the middleware, and in Section 5 we discuss its
architecture; validation is then accomplished in Section 6. In Section 7 we discuss
some related approaches, and in Section 8 we conclude. An extended version of
the paper, with background and supplementary material, is available in [7].
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Fig. 1: A schema of the primitive behaviours.

2 The middleware at a glance

Figure 1 illustrates the main features of our middleware. In (1), the participant
A advertises its contract to the middleware, making it available to other par-
ticipants. In (2), the middleware determines that the contracts of A and B are
compliant, and then it establishes a session through which the two participants
can interact. This interaction consists in sending and receiving messages, simi-
larly to a standard MOM [4]: for instance, in (3) participant A delivers to the
middleware a message for B, which can then collect it from the middleware.

Unlike standard MOMs, the interaction happening in each session is moni-
tored by the middleware, which checks whether contracts are respected or not. In
particular, the execution monitor verifies that actions can only occur when pre-
scribed by their contracts, and it detects when some expected action is missing.
For instance, in (4) the execution monitor has detected an attempt of partic-
ipant B to do some illegal action. Upon detection of a contract violation, the
middleware punishes the culprit, by suitably decreasing its reputation. This is a
measure of the trustworthiness of a participant in its past interactions: the lower
is the reputation, the lower is the probability of being able to establish new ses-
sions with it. The reputation system exploits some of the techniques in [33] to
mitigate self-promoting attacks [21].

Item (5) shows another mechanism for establishing sessions: here, the par-
ticipant C advertises a contract, and D just accepts it. Technically, this requires
the middleware to construct the dual of the contract of C, to associate it with D,
and to establish a session between C and D. The interaction happening in this
session then proceeds as described previously.

Some simple examples of contract-oriented programs are shown in [7].
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3 Specifying contract-oriented services

In this section we introduce TCO2 (for timed CO2), a specification language for
contract-oriented services. This is a timed extension of the process calculus in [9],
through which we can specify services interacting through primitives analogous
to those sketched in Section 2. Rather than giving a tour de force formalization
of the whole middleware behaviour, we focus here on the core functionalities.
Extending the calculus with more advanced features (like e.g. value passing,
exceptions, reputation, etc.) can be done using standard techniques. A more
detailed account of TCO2 is contained in [7].

The formalisation of TCO2 is independent from the chosen contract language,
as we only pivot on a few abstract operators and relations on contracts. In
particular, we assume: (1) a compliance relation ./, which relates two contracts
whenever their interaction is “correct” [8]; (2) a predicate which says if a contract
admits a compliant one; (3) a function co(·) that, given a contract p, gives a
contract compliant with p (when this exists); (4) a transition relation −→→ between
contract configurations γ, γ′, which makes contracts evolve upon actions and time
passing. We denote with Γ0(A :p,B :q) the initial configuration of an interaction
between A (with contract p) and B (with contract q).

The syntax of TCO2 is defined as follows, where x, y, . . . ∈ V are variables,
s, t, . . . ∈ N are names, and u, v, . . . ∈ V ∪ N . Further, we assume a set of
participants (ranged over by A,B, . . .), a set of message labels (ranged over by
a, b, . . .), and a set of process names (ranged over by X,Y, . . .).

S ::= 0
∣∣ A[P ]

∣∣ s[γ]
∣∣ (u)S

∣∣ S | S
∣∣ {↓u p}A

P ::= 0
∣∣ X(u)

∣∣ π . P
∣∣ (u)P

∣∣ u� {ai . P i}i∈I
π ::= τ

∣∣ tell ↓u p
∣∣ sendu a

∣∣ idle(δ)
∣∣ accept(x)

∣∣ x̄y
∣∣ x(y)

Systems S, S ′, . . . are the parallel composition of agents A[P ], sessions s[γ],
delimited systems (u)S , and latent contracts {↓u p}A. The latter represents a
contract p (advertised by A) which has not been stipulated yet; upon stipulation,
the variable u will be instantiated to a fresh session name.

Processes P ,Q, . . . are: prefixed processes π . P ; branching u� {ai . P i}i∈I ,
which behaves as the continuation P j upon receiving at session u a message
aj ; named processes X(u), used e.g., to specify recursive behaviours1; delimited
processes (u)P ; and the terminated process 0.

The prefix τ allows to do some internal actions, tell↓u p to advertise a
contract p. Intuitively, u is a place-holder for the name of the session where
p will be used. accept(x) allows to accept the contract received at x, sendu a
to send a message a at session u, and idle(δ) to delay by a time δ ∈ R≥0;
the prefixes x̄y and x(y) allow for the usual channel-based communication à

1 We denote with u a sequence of names/variables, and we assume each X to have a

unique definition X(x1, . . . , xj)
def
= P , with the free vars of P included in x1, . . . , xj .
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∃q : p ./ q

A[tell ↓u p. P ]
tell−−→ A[P ] | {↓u p}A

[Tell]

p ./ q γ = Γ0(A :p,B :q) σ = {s/x,y} s fresh

(x, y)(S | {↓x p}A | {↓y q}B)
fuse−−→ (s)(Sσ | s[γ])

[Fuse]

γ = Γ0(A : co(q),B :q) σ = {s/x} s fresh

(x)(A[accept(x). P ] | {↓x p}B | S)
accept−−−−→ (s)(A[P σ] | s[γ] | Sσ)

[Acpt]

γ
A:!a−−→→ γ′

A[sends a . P ] | s[γ]
send−−→ A[P ] | s[γ′]

[Send]

γ
A:?a−−→→ γ′ a = aj

A[s� {ai . P i}] | s[γ]
receive−−−−→ A[P j ] | s[γ′]

[Recv]

γ
δ−→→ γ′

s[γ]
δ−→ s[γ′]

[Delay-γ]
0 < δ′ ≤ δ

A[idle(δ). P ]
δ′−→ A[idle(δ − δ′). P ]

[Idle]

Fig. 2: Reduction semantics of TCO2 (full set of rules in [7].

la π-calculus [25]. Note that the primitive tell allows process to communicate
(when their contracts will be fused), in the absence of any pre-shared name.2

The semantics of TCO2 is summarised in Figure 2 as a reduction relation
between systems. The labels are used to separate urgent actions from non-urgent
ones. When an urgent label is enabled, time is not allowed to pass (similarly to
the asap operator in U-LOTOS [28]). This enforces a fairness property: if an
urgent action is enabled, the scheduler can not prevent it by letting time pass.
In TCO2, every discrete action is urgent, except for fuse; this formalises the
intuition that a session between two compliant contracts can be created at any
time by the middleware, independently from the participants’ behaviour.

Rule [Tell] adds to the system a latent contract {↓u p}A, if p admits a com-
pliant contract. Rule [Fuse] searches the system for compliant pairs of latent
contracts, i.e. {↓xp}A and {↓y q}B such that p ./ q (and A 6=B). Then, a fresh
session s containing the initial configuration γ = Γ0(A : p,B : q) is established,
and the name s is shared between A and B. Rule [Acpt] allows A to accept a
latent contract q , which is passed through the channel x; then, the contract of
A at s will be co(q). Rule [Send] allows A to send a message !a to the other end-
point of session s. This is only permitted if the contract configuration at s can
take a transition on A : !a, whereas messages not conforming to the contract
will make A culpable of a violation. Rule [Recv] allows A to receive a message
aj from the other endpoint of s, and to behave like the continuation P j . Rule

2 To avoid confusion between “channel-kinded” variables used in input/output prefixes
and “session-kinded” variables, we forbid processes which improperly mix them, like
e.g. tell ↓y p.y(x), where y is used both as a session variable and a channel variable.
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[Delay-γ] allows a session s[γ] to idle, if permitted by the contract configuration
γ at s (note that idling may make one of the participants culpable). Rule [Idle]

is standard [28], and it allows a process to idle for a certain time δ. The other
rules for dealing with time (and with the other constructs) are reported in [7].

A simple interaction in TCO2 is shown in [7].

4 System design

In this section we show how the interaction paradigm sketched in Section 2 (and
formalised in Section 3) is supported by our middleware, and we illustrate the
main design choices.

4.1 Specifying contracts

Although the design of the middleware is mostly contract-agnostic, in this paper
we describe and evaluate timed session types [6] (TSTs) as a particular instance
of contracts. TSTs extend binary session types [35,22] with clocks and timing
constraints, similarly to the way timed automata [2] extend (untimed) finite
state automata. We give below a brief overview of TSTs, and we refer to [6] for
the full technical development. Clocks x, y, . . . are variables over R≥0, which can
be reset, and used within guards g, g ′, . . .. Atomic guards are timing constraints
of the form x ◦ d or x − y ◦ d, where d ∈ N and ◦ ∈ {<,≤,=,≥, >}, and they
can be composed with the boolean connectives ∧, ∨, ¬.

A TST p (Definition 1) describes the behaviour of a single participant in-
volved in an interaction. An internal choice

∑
i!ai{gi, Ri} . pi models the fact

that its participant wants to do one of the outputs with label ai in a time window
where the guard gi is true; the clocks in Ri will be reset after the output is per-
formed. An external choice &i?ai{gi, Ri} . qi models the fact that its participant
is available to receive each message ai at any instant within the time window
where the guard gi is true; furthermore, the clocks in Ri will be reset after the
input is received. The term 1 denotes success (i.e., a terminated interaction).
Infinite behaviour can be specified through recursion recX. p.

Definition 1 (Timed session types [6]). Timed session types p, q, . . . are
terms of the following grammar:

p ::= 1
∣∣ ∑

i∈I!ai{gi, Ri} . pi
∣∣ &i∈I?ai{gi, Ri} . pi

∣∣ recX. p
∣∣ X

where (i) the set I is finite and non-empty, (ii) the labels in internal/external
choices are pairwise distinct, (iii) recursion is guarded and considered up-to un-
folding. True guards, empty resets, and trailing occurrences of 1 can be omitted.

Message labels are grouped into contexts, which can be created and made
public through the middleware APIs. Each context defines the labels related to
an application domain, and it associates each label with a type and a verifica-
tion link. The type (e.g., int, string) is that of the messages exchanged with

249



that label. The verification link is used by the runtime monitor (Section 4.4) to
delegate the verification of messages to a trusted third party. For instance, the
middleware supports Paypal as a verification link for online payments (see Sec-
tion 6.3). The context also specifies the duration of a time unit: the shortest
time unit supported by the middleware is that of seconds, which is also the one
we use in all the examples in this paper.

4.2 Advertising contracts

Once a contract has been created, a participant can advertise it to the mid-
dleware. At that point, the contract stays latent until the middleware finds a
compliant one, i.e. another latent contract with whom the interaction is guar-
anteed not to get stuck. When this is found, the middleware creates a session
between the two participants: the session consists of a private channel name and
a contract configuration, which keeps track of the state of the contract execution.

The notion of compliance between TSTs (Definition 6 in [6]) is based on
a transition system over contract configurations (Definition 5 in [6]). Contract
configurations have the form (p, ν) | (q, η), where p, q are TSTs, and ν, η are
clock evaluations (i.e., functions from clocks to R≥0); in the initial configuration
Γ0(A :p,B :q), the clock evaluations map each clock to 0. Intuitively, p and q are
compliant (in symbols, p ./ q) if, in all reachable configurations, the “required”
behaviour of p (i.e., the branches in its internal choice) is “offered” by q in an
external choice, while respecting the time constraints.

Example 1. Let p = ?a{x ≤ 2} & ?b{x ≤ 5}, and consider the following TSTs:

q1 = !a{y ≤ 1} q2 = !a{y ≤ 3} q3 = !a{y ≤ 2} + !c{y ≤ 2}
We have that p ./ q1: indeed, q1 wants to output a within one time unit, and p
is available to input a for two time units; compliance follows because the time
window for the input includes that for the output. On the contrary, p 6./ q2,
since the time window required by q2 is larger than the one offered by p. Finally,
p 6./ q3: although the timing constraints for label a match, q3 can also choose to
send c, which is not among the labels offered by p in its external choice.

Deciding compliance. Compliance between TSTs is decidable (Theorem 1 in [6]).
To check if p./q , we use the encoding in [6] to translate p and q into Uppaal timed
automata [11], and then we model-check the resulting network for deadlock free-
dom. This amounts to solve the reachability problem for timed automata, whose
theoretical worst-case complexity is exponential (more precisely, the problem is
PSPACE-complete [2]). In practice, the overall execution time for compliance
checking for the TSTs in our test suite is in the order of milliseconds; e.g., in
the experimental setup described in Section 6, it takes approximately 20ms to
check compliance between the largest TSTs on our hand, i.e. those modelling
PayPal Protection for Buyers [1]. Since, however, the execution time of compli-
ance checking is non-negligible, we do not perform an exhaustive search when
searching the contract store for compliant pairs of contracts; rather, we use the
techniques described in the following paragraphs to reduce the search space.
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Compliance pre-check. When a TST is advertised, the middleware stores in its
database the associated timed automaton (which is then computed only once
for each TST), and a digest of the TST; this digest comprises its context, and
one bit which tells whether its top-level operation is an internal or an external
choice (up-to unfolding). When looking for a contract compliant with p, the
digests are used to rule out (without invoking the Uppaal model checker) some
contracts which are surely not compliant with p. In particular, we rule out those
q belonging to a context different from that of p, and those with the same top-
level operator as p (as internal choices can only be compliant with external ones,
and vice versa). The remaining contracts are potentially compliant with p, and
so we restrict the search space to them. The search also takes into account the
reputation of the participants who have advertised these contracts, as described
in the following paragraph.

Reputation. The middleware assigns to each participant a reputation, which
measures its ability to respect contracts. Intuitively, the reputation is increased
when the participant successfully completes a session, while it is decreased when
it is found culpable of a contract violation (more details about the formula-
tion of the reputation system in Section 4.4). Reputation is used to sort latent
contracts when searching for compliant pairs: the higher the participant’s repu-
tation, the higher the probability to establish a session with it. When looking for
a contract compliant with p, we first construct the list of contracts potentially
compliant with it (sorted by descending reputation). Then, we randomly choose
one of them, according to the folded normal probability distribution. This causes
contracts with high reputation to be chosen with high probability, while giving
some chances also to contracts with low reputation. If the chosen contract is not
compliant with p, it is discarded, and the algorithm chooses another one.

Checking the existence of a compliant. Not all TSTs admit a compliant one.
For instance, no contract can be compliant with p = !a{y < 7}. ?b{y < 5},
because if p outputs a at time 6, the counterpart cannot send b in the required
time constraint. A sound and complete decision procedure for the existence of a
compliant is developed in [6]. When advertising a contract, we use this procedure
to rule out those contracts which do not admit a compliant one.

4.3 Accepting contracts

As discussed in Section 2, a participant A can establish a session with B by
accepting one of its contracts, whose identifier has been made public by B. Tech-
nically, when A declares to accept a contract p, the middleware constructs the
dual of p, and assigns it to A. The dual of p is the greatest contract compliant
with p, according to the subcontract preorder [6]: intuitively, it is the one whose
offers match all of p’s requests, and whose requests match all p’s offers.

Unlike in the untimed case, the näıve construction of the dual of a TST p
(i.e., the one which simply swaps inputs with outputs and internal choices with
external ones) does not always produce a compliant TST. For instance, the
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näıve dual of p = ?a{x ≤ 2}. ?b{x ≤ 1} is q = !a{x ≤ 2}. !b{x ≤ 1}, which is
not compliant with p. Indeed, since q can output !a at any time 1 < δ ≤ 2, the
interaction between p and q can become deadlock, and so they are not compliant.

The dual construction used by the middleware is the one defined in [6],
which guarantees to obtain a TST compliant with p, if it exists. Roughly, the
construction turns all the internal choices into external ones (without changing
guards), and it turns external choices into internal ones, updating the guards to
preserve future interactions. For instance, in the example above we obtain the
TST !a{x ≤ 1}. !b{x ≤ 1}, which is compliant with p.

4.4 Service interaction and runtime monitoring

When a session is established, the participants at the two endpoints can interact
by sending and receiving messages. At a more concrete level, sending a message
through a session is implemented by posting the message to the middleware,
through its RESTful API. The middleware logs the whole interaction history, by
recording and timestamping all the messages exchanged in the session. Receiving
a message is also implemented by invoking the middleware API; upon a receive
request, the middleware inspects the session history to retrieve the first unread
message (which is then marked as read). The interaction over the session is
asynchronous, as the middleware (similarly to a standard MOM) interprets the
session history as two unbounded FIFO buffers containing the messages sent by
the two endpoints3. However, differently from standard MOMs, our middleware
monitors the interaction to verify that contracts are respected.

The runtime monitor processes each message exchanged in a session, by
querying the verification link associated to it (to detect whether the message
is genuine or not), and by checking that the message is permitted in the current
contract configuration. Then, the monitor computes who is in charge of the next
move, and, in case of contract violations, it detects which of the two participants
is culpable. A participant A can become culpable for different reasons:

1. A sends a message not expected by her contract;
2. A’s contract is an internal choice, but A loses time until all the branches

become unfeasible (i.e., the time constraints are no longer satisfiable);
3. A sends some action at a valid time, but the trusted third party (associated

to the action by the verification link) rejects it. For instance, this can happen
if A tries to send a fake payment, but Paypal does not certify it.

The monitor guarantees that, in all possible states of the interaction, only
one of the participants can be in charge of the next action; if no one is in charge
nor culpable, then both participants have reached success (Lemma 3 in [6]).

Once a session terminates (either succesfully or not), the reputation of the
involved participants is updated. If the session terminates successfully, then the
reputation of both participants is increased; otherwise, the reputation of the

3 Asynchronous communication is possible despite TSTs having a synchronous seman-
tics, as the middleware is delegated to receive messages on behalf of the recipient.
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Fig. 3: A diagram of the middleware architecture.

culpable participant is decreased, while the other participant’s reputation is in-
creased. Further, we make participants consume reputation points each time they
enter in session, and we use the fading memories technique of [33] to calculate the
reputation value without recording the whole history of interactions. We weight
recent negative behavior more than old positive behaviour, in order to mitigate
self-promoting attacks, where a malicious participant tries to gain reputation by
running successful sessions with himself or with some accomplices [21].

5 System architecture

The middleware is a Java RESTful Web service; the primitives described in Sec-
tion 4 are organised in components, as shown in Figure 3. We have adopted a
3-tier architecture, consisting of a presentation layer, a business logic layer, and
a data storage layer. The Interface Manager, which is the only component in the
presentation layer, offers APIs to query the middleware, through HTTP POST
requests. APIs can be accessed through language-specific libraries, which allow
for an object-oriented programming style (see Appendix A in [7]). The data stor-
age layer comprises a relational DB and a Database Manager, which takes care of
handling queries, managing the cache, and modelling the data used in the other
layers. The business logic layer manages contracts and sessions. More specifi-
cally, the Contract Manager performs the contract validation, advertisement (as
in Section 4.2), and accept requests (Section 4.3); the Session Manager estab-
lishes sessions, by allowing clients to send and receive messages, managing the
session history, and querying the Runtime Monitor to detect contract violations.

A client advertises a contract p with the tellContract API of the Interface
Manager, encoding the required data in the JSON data exchange format. The
Interface Manager validates p, then it asks the Contract Manager to store it and
to find a compliant contract, as outlined in Section 4.2. If no latent contracts are
compliant with p, then p is kept latent, otherwise a new session is established.
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The Interface Manager also provides the acceptContract API, which requires the
Contract Manager to compute the dual of a latent contract q , whose identifier
has been made public by another participant.

When a session is established, participants can query the middleware to get
the current time, to send and receive messages, to check culpability, etc. The In-
terface Manager provides the methods for handling such requests, delegating the
internal operations to the Session Manager. When a participant sends a message,
the Session Manager uses the Runtime Monitor to determine whether the action
is permitted (and in case it is not, to assign the blame). If the action is permit-
ted, the message is stored by the Database Manager, and then forwarded to the
other participant upon a receive. To verify a message, the Runtime Monitor can
invoke a trusted third party: if the verification fails, the action is rejected (so,
our monitor implements truncation, in the terminology of [24]).

6 Validation

In this section we validate our middleware, mainly focussing on the aspects
related to system scalability (Section 6.1), and to the effectiveness of the reputa-
tion system to rule out services not respecting contracts (Section 6.2). We also
discuss how the middleware has been exploited to implement a large software
system for managing online reservations (Section 6.3).

We carry out our experiments using a public instance of the middleware, ac-
cessible from the Web at co2.unica.it. The instance is a Web service running in
a dedicated cloud server, equipped with a quad-core Intel Xeon CPU @ 2.27GHz,
16GB of RAM and a 50GB SSD hard drive; the server runs Ubuntu 14.04 LTS,
with Apache Tomcat and Oracle MySQL. Clients are tested in standard desk-
top PCs and laptops, while the multi-threaded simulations are executed in a
high-level desktop configuration, with an octa-core Intel Core i7 @ 4.00GHz and
16Gb of memory, running Microsoft Windows 7 and Oracle JRE 1.7.

6.1 Scalability

In this section we assess the scalability of our middleware. We start by bench-
marking the tell primitive, which triggers a search for compliant pairs of TSTs
in the contract store. This is the most computationally expensive operation in
the middleware: although the heuristics discussed in Section 4.2 allow for lim-
iting the number of calls to the Uppaal model checker, the execution time of
a tell could be non-negligible for a high number of latent contracts. So, we
measure the execution time of tell p as a function of the number of TSTs in
the contract store, and of the number of latent TSTs compliant with p.

Our second experiment concerns the performance of the runtime monitor. As
described in Section 4.4, this component processes all the messages exchanged
in sessions, to check if contracts are respected. Potentially, this could introduce
a relevant computational overhead, so we measure the execution time of send
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(a) Duration of tell p (in seconds). (b) Duration of send (in milliseconds).

Fig. 4: Results of the scalability tests. In (a), K is the number of contracts
compliant with p, and N is the total number of contracts.

in case the runtime monitor is turned on, or off. Note that, while the duration
of tell does not affect the interaction between the participants once a session is
established, a slowdown of the send can make an otherwise-honest participant
culpable for not respecting some deadline. So, it is important that the overhead
of the runtime monitor is negligible, w.r.t. the time scale of temporal constraints.

We build our scalability tests upon the discrete-event simulator DESMO-J [18],
and the statistical model-checker MultiVeStA [32]. In particular, we use DESMO-J
to define a single instance of the simulation, and MultiVeStA to run sequences
of simulations until reaching a given confidence interval.

Tell. We test the execution time of tell p as a function of the number N of
contracts stored in the middleware. The contract p used in our experiments is
a simplified version of the Paypal Protection for Buyers (Example 1 in [6]). We
assume that, among the N contracts, only K � N are compliant with p, while
the remaining N −K are not, but they still pass the pre-check discussed in Sec-
tion 4.2 (so, we are considering a worst-case scenario, because in the average
case we expect that only a fraction of the contracts would pass the pre-check).
We populate the contract store by choosing at each step whether to insert a con-
tract compliant with p or a non-compliant one, according to a random weighted
probability. Then, with DESMO-J we execute tell p, and we measure its ex-
ecution time. MultiVeStA makes DESMO-J execute this simulation for several
times, each time collecting the new tell duration and updating the average
and the standard deviation; the simulations stop when the average fits into the
confidence interval.

The results of our experiments are shown in Figure 4. As we can see, the
tell duration grows linearly with N , and it increases by a constant when the
percentage K/N of contracts compliant with p decreases; note that the slope of
the curves does not seem to be significantly affected by K/N .

Runtime monitor. The goal of this experiment is to quantify how the exe-
cution of a large number of simultaneous send affects the performance of the
middleware. To achieve this goal, we use a multi-threaded simulation, where all
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the threads advertise a contract with an internal sum, wait the session to be
established, and then simultaneously perform the send. We repeat the measure
of the send duration until its standard deviation fits into the confidence interval.
The results of this experiment are reported in Figure 4b, which shows that the
execution of a large number of simultaneous sends penalizes the duration of the
request, compared to the situation where the runtime monitor is switched off.
However, the performance degradation seem to grow sub-linearly in the number
of simultaneous requests, and in any case it is negligible w.r.t. the time scale of
temporal constraints (1 time unit = 1 second).

6.2 A distributed experiment: RSA cracking

Consider a service (hereafter referred to as master, or just M) who wants to solve
a cryptographic problem by exploiting the computational resources of external
nodes (hereafter called workers, or W) distributed over the network. In particu-
lar, M wants to crack a set of public RSA keys, in order to get the corresponding
private keys. However, the master does not know the network structure (i.e.,
how many workers are available, where they are located, and how they are con-
nected), and it does not have any pre-shared channel for communicating with
them. Furthermore, the master does not trust the workers: they are not bound
to run any particular cracking algorithm, they can return wrong/incomplete
results, or they can fail to answer within the expected deadline.

To cope with these issues, the master exploits our middleware to automat-
ically discover and invoke suitable workers. For each public key in its set, the
master spawns a process which advertises the contract:

pM = !pubkey{;x}. (?confirm{x < 15}. ?result{x < 90}. !pay1xbt{x < 120}
& ?abort{x < 15})

Here, M is promising to send a public key (pubkey); doing so triggers a reset of
the clock x. Then, the worker has 15 seconds to either confirm that he will carry
on the task, or abort (e.g., if the key is considered too strong). If the worker
confirms, it must return the corresponding result (a private key) within 90
seconds since the public key was sent (the correctness of the result is checked by a
trusted third party,4 specified by the context of pW); finally, M rewards the worker
with 1 bitcoin (pay1xbt). At runtime, the master behaves as prescribed by its
contract; if the worker accepts the public key and it returns the corresponding
private key, then M removes that public key from the list; otherwise, it advertises
another instance of pM, and when the session is established it sends the same
public key to another worker.

The advantage offered by the middleware in terms of code succinctness is
clear, as the search of workers, the establishment of sessions, and the runtime

4 Note that verifying the correctness of private keys has a polynomial complexity in
the number of bits of the public key, while the problem of cracking RSA keys is
considered to be exponentially hard.
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(a) OET with reputation enabled. (b) OET with reputation disabled.

Fig. 5: Overall Execution Time as a function of the number of keys to be broken.
IW is the number of inefficient workers, and T is the total number of workers.

monitoring is completely transparent to programmers. So, we assess below the
reputation system implemented in the middleware (Sections 4.2 and 4.4). In
particular, we measure the time taken by the master for cracking all the public
keys in its list (Overall Execution Time, OET ). We do this in two configurations
of the middleware: the one where the reputation system is turned on, and the one
where it is turned off. Our conjecture is that turning the reputation system on
will reduce the OET, because it increases the probability of establishing sessions
with honest workers which produce correct results while respecting deadlines.

In our experiments, we assume that workers are drawn from two different
classes: those using an efficient cracking algorithm, which always return the cor-
rect result within the deadline; and those using an inefficient algorithm, which
sometimes may miss the deadline, because the computation takes too long. We
also assume that the number of public keys is bigger than the number of work-
ers, so each of them may receive many keys to break. Each worker iteratively
advertises its contract (the dual of pM), then waits for a public key, runs the
cracking algorithm, and finally return the private key to the master.

The results of our experiment are shown in Figure 5, where we measure
the OET as a function of the number of keys to be broken, and of the ratio
between efficient and inefficient workers. The solid curve is identical in the two
figures, since the reputation system does not affect the selection of workers when
there are only efficient ones. In the dashed curve and in the dot-dashed one the
percentage of inefficient workers grows (to 20% and 40%, respectively), and we
see that the OET grows accordingly when the reputation system is turned off.
This is because the reputation system penalizes inefficient workers, by reducing
the probability they can establish sessions with the master.

6.3 Case study: a contract-oriented reservation marketplace

To test the effectiveness and versatility of our middleware for the development
of real distributed applications, we have exploited it as a contract layer in a
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software infrastructure for online reservations [5]. The infrastructure acts as a
marketplace wherein service providers make available their resources, which can
then be searched, reserved, and used by clients. These reservations can be of
arbitrary nature, as the infrastructure features an abstract model of resources,
which can be suitably instantiated by service providers. The infrastructure has
been tested with various instances of providers, offering e.g. car sharing facilities,
medical appointments, and hotel accommodations.

The reservation marketplace adds a search layer to that of the middleware:
clients can search among the resources, and when they find a suitable one they
can accept its contract. Contracts are constructed by service providers through
a GUI, starting from a template and then selecting among various options and
parameters. For instance, a simple contract for a service provider is the following:

p = ?pay{t < dpay}. ?details{t < dpay + 60, t}. p′ & ?cancel{t ≤ dcc}
p′ = recX.

(
?feedback{t < dfb} & ?cancel{t < dcc}. !refund{t ≤ drf } & p′′

)

p′′ = ?move{t < dmv}.
(
!ok{t < dok}. ?feedback{t < dfb} + !no{t < dno}. X

)

The provider waits for a payment and some details about the reservation;
then, it gives the client a choice among three actions: accept the reservation (and
leave a feedback), cancel it (which involves a refund), or move it to another
date. Moving reservations is not always permitted (e.g., because the new date is
not available), so when the provider notifies no, it allows the client to try again.

Contracts are enforced by the runtime monitor of the middleware, which del-
egates the verification of payments and refunds to PayPal. Clients and providers
can check the state of their contracts through the GUI, which at any time also
highlights the permitted actions and their deadlines.

7 Related work

Our middleware builds upon CO2 [10,9], a core calculus for contract-oriented
computing; in particular, the middleware implements all the main primitives of
CO2 (tell, send, receive), and it introduces new concepts, like e.g. the accept
primitive, time constraints, and reputation.

From the theoretical viewpoint, the idea of constraint-based interactions has
been investigated in other process calculi, e.g. Concurrent Constraint Program-
ming (CCP [31]), and cc-pi [17], albeit the kind of interactions they induce is
quite different from ours. In CCP, there is a global constraint store through
which processes can interact by telling/asking constraints. In cc-pi, interaction
is a mix of name communication à la π-calculus [25] and tell à la CCP (which
is used to put constraints on names). E.g., x̄〈z〉 and y〈w〉 can synchronise iff the
constraint store entails x = y; when this happens, the equality z = w is added to
the store, unless making it inconsistent. In cc-pi consistency plays a crucial role:
tells restricts the future interactions with other processes, since adding con-
straints can lead to more inconsistencies; by contrast, in our middleware telling
a contract enables interaction with other services, so consistency is immaterial.
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The notion of time in behavioural contracts has been studied in [15], which
addresses a timed extension of multi-party asynchronous session types [23]; how-
ever, the goals of [15] are quite different from ours. The approach pursued in [15]
is top-down: a global type (specifying the overall communication protocol of a
set of services, and satisfying some safety properties, e.g. deadlock-freedom) is
projected into a set of local types; then, a composition of services preserves the
properties of the global type if each service type-checks against the associated
local type. Our middleware fosters a different approach to service composition:
a distributed application is built bottom-up, by advertising contracts to del-
egate work to external (unknown and untrusted) services. Both our approach
and [15,27] use runtime monitoring to detect contract violations and assign the
blame; additionally, in our middleware these data are exploited as an automatic
source of information for the reputation system. Another formalism for commu-
nication protocols with time constraints is proposed in [19], where live sequence
charts are extended with a global clock. The approaches in [15,19] cannot be di-
rectly used in our middleware, because they do not provide algorithms to decide
compliance, or to construct a contract compliant with a given one.

From the application viewpoint, several works have investigated the problem
of service selection in open dynamic environments [3,26,37,38]. This problem
consists in matching client requests with service offers, in a way that, among the
services respecting the given functional constraints, the one which maximises
some non-functional constraints is selected. These non-functional constraints
are often based on quality of service (QoS) metrics, e.g. cost, reputation, guar-
anteed throughput or availability, etc. The selection mechanism featured by our
middleware does not search for the “best” contract compliant with a given one
(actually, typical compliance relations in behavioural contracts are qualitative,
rather than quantitative); the only QoS parameter we take into account is the
reputation of services (see Section 4.2). In [38,3] clients can require a sequence of
tasks together with a set of non-functional constraints, and the goal is to find an
assignment of tasks to services which optimises all the given constraints. There
are two main differences between these approaches and ours. First, unlike be-
havioural contracts, tasks are considered as atomic activities, not requiring any
interaction between clients and services. Second, unlike ours, these approaches
do not consider the possibility that a service may not fulfil the required task.

In the work [26], a service selection mechanism is implemented where func-
tional constraints can be required in addition to QoS constraints: the first are
described in a web service ontology, while the others are defined as requested
and offered ranges of basic QoS attributes. A runtime monitor and a reputation
system are also implemented, which, similarly to ours, help to marginalise those
services which do not respect the advertised QoS constraints. Some kinds of QoS
constraints cannot be verified by the service broker, so their verification is dele-
gated to clients. This can be easily exploited by malicious participants to carry
on slandering attacks to the reputation system [21]: an attacker could destroy
another participant’s reputation by involving it in many sessions, and each time
declare that the required QoS constraints have been violated. In our middleware
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there is no need to assume participants trusted, as the verification of contracts
is delegated to the middleware itself and to trusted third parties.

8 Conclusions

We have explored a new application domain for behavioural contracts, i.e. their
use as interaction protocols in MOMs. In particular, we have developed a middle-
ware where services can advertise contracts (in the form of timed session types,
TSTs), and interact through sessions, which are created only between services
with compliant contracts. To implement the middleware primitives, we have ex-
ploited much of the theory of TSTs in [6]: in particular, a decidable notion of
compliance between TSTs, a decidable procedure to detect when a TST admits
a compliant one (and, if so, to construct it), and a decidable runtime monitoring.

We have validated our middleware through a series of experiments. The scal-
ability tests (Section 6.1) seem to suggest that the performance of middleware
is acceptable for up to 100K latent contracts. However, we feel that good per-
formance can be obtained also for larger contract stores, for two reasons. First,
in our experiments we have considered the pessimistic scenario where all latent
contracts in the store are potentially compliant with a newly advertised one.
Second, the current prototype of the middleware is sequential and centralised:
parallelising the instances of the compliance checker, or distributing those of the
middleware, would result in a performance boost. The experiments about the
reputation system (Section 6.2) show that the middleware can relieve developers
from dealing with misbehaviour of external services, and still obtain efficient
distributed applications, which dynamically reconfigure themselves to foster the
interaction among trustworthy services.

Although in this paper we have focussed on TSTs, the middleware only makes
mild assumptions about the nature of contracts, e.g., that their observable ac-
tions are send and receive, and that they feature some notion of compliance
with a sound (but not necessarily complete) verification algorithm. Hence, with
minor efforts it would be possible to extend the middleware to support other con-
tract models. For instance, communicating timed automata [14] (which are timed
automata with unbounded communication channels) would allow for multi-party
sessions, while session types with assertions [13], would allow for an explicit spec-
ification of the constraints among the values exchanged in sessions.

Besides the issues related to the expressiveness of contracts and to the scal-
ability of their primitives (e.g., service binding and composition, runtime mon-
itoring, etc.), we believe that also security issues should be taken into account:
indeed, attackers could make a service sanctioned by exploiting discrepancies be-
tween its contracts and its actual behaviour. These mismatches are not always
easy to spot (see e.g. the online bookstore example in Appendix A.4 in [7]);
analysis techniques are therefore needed to ensure that a service will not be
susceptible to this kind of attacks.
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Abstract. The grand composition of n automata may have a number
of states/transitions exponential in n. When it does, it seems not unrea-
sonable for the computation of that grand composition to require expo-
nentially many resources (time, space, or both). Conversely, if the grand
composition of n automata has a number of states/transitions only linear
in n, we may reasonably expect the computation of that grand compo-
sition to also require only linearly many resources.
Recently and problematically, we saw cases of linearly-sized grand com-
positions whose computation required exponentially many resources. We
encountered these cases in the context of Reo (a graphical language for
coordinating components in component-based software), constraint au-
tomata (a general formalism for modeling systems’ behavior), and our
compiler for Reo based on constraint automata. Combined with ear-
lier research on constraint automata verification, these ingredients facil-
itate a correctness-by-construction approach to component-based soft-
ware engineering—one of the hallmarks in Sifakis’ “rigorous system de-
sign”. To achieve that ambitious goal, however, we need to solve the
previously stated problem. In this paper we present such a solution.

1 Introduction

Context. Over the past decades, coordination languages emerged for modeling
and implementing interaction protocols among components in component-based
software. This class of languages includes Reo [1,2]. Reo facilitates compositional
construction of connectors: software entites that embody concurrency protocols
for coordinating the synchronization and communication among components.
Metaphorically, connectors constitute the “glue” that holds components together
in component-based software and mediates their communication. Figure 1 al-
ready shows a number of example connectors in their usual graphical syntax.
Briefly, a connector consists of a number of channels (edges), through which
data can flow, and a number of nodes (vertices), on which channel ends co-
incide. The graphical appearance of a channel indicates its type; channels of
different types have different data-flow behavior. Figure 1, for instance, includes
standard synchronous channels (normal edges) and asynchronous channels with
a 1-capacity buffer (rectangle-decorated edges), among others.

Reo has several formal semantics [8], with different purposes. The existence
of such formal semantics forms a crucial precondition for Reo-based rigorous
system design [15]: a design approach proposed by Sifakis centered around the
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Fig. 1: Example connectors

principles of component-based software engineering, separation of concerns, and
correctness-by-construction. In this paper, we focus on one particularly impor-
tant formal semantics of Reo: constraint automata (ca) [5]. Constraint automata
specify when during execution of a connector which data flow where (i.e., through
which channel ends). We can compute the global ca for a connector from the
local cas for that connector’s nodes and channels. As such, cas constitute a
compositional formal semantics of Reo. Both verification and compilation tools
for Reo leverage this compositionality (e.g., [3,4,12,9,10]); the combination of
such tools facilitates a correctness-by-construction approach to component-based
software-engineering—one of the hallmarks in Sifakis’ rigorous system design.

Problem. Reo’s ca-based verification and compilation tools regularly need to
compute the grand composition of the local cas for a connector’s constituents
(i.e., its nodes/channels), to obtain its global ca for subsequent correctness anal-
yses or code generation. The grand composition of n constraint automata, how-
ever, may yield a compound ca of a size exponential in n. The representation of
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such exponentially-sized compound cas may require an exponential amount of
space; computation of such cas may require an exponential amount of time.

Recently, we reported on a number of experiments with our ca-based Reo-
to-Java compiler [10]. In these experiments, we indeed observed exponential re-
source consumption for computing exponentially-sized grand compositions. Cu-
riously, however, we also observed exponential resource consumption for comput-
ing linearly-sized grand compositions. Whereas exponential resource consump-
tion seems undesirable but understandable for exponentially-sized grand com-
positions, it seems unacceptable and unintelligible for linearly-sized ones. Before
we can achieve the ambitious goal of Reo-based rigorous system design, we must
better understand this problem and find a solution.

Contribution. Based on earlier preliminary observations [10], we present a care-
ful analysis of the previously stated problem. Essentially, as we shortly explain
in more detail, our existing approach for computing grand compositions some-
times involves the computation of exponentially many “intermediately-reacha-
ble-but-finally-unreachable” states in “intermediate compounds”, which become
unreachable only in the “final compound”. Subsequently, we present a solution
for this problem in terms of a new approach for computing grand compositions;
we prove the corresponding algorithm’s correctness using Hoare logic. Finally, we
present our implementation of this new approach and evaluate its performance.

In Section 2, we discuss preliminaries on Reo and cas. In Section 3, we an-
alyze the previously stated problem. In Section 4, we present our solution. In
Section 5, we evaluate an implementation. Section 7 concludes this paper. An as-
sociated technical report contains all formal definitions and in-depth proofs [11].

2 Preliminaries

2.1 Reo

Reo is a graphical language for compositional construction of interaction proto-
cols, manifested as connectors [1,2]. Connectors consist of channels and nodes,
organized in a graph-like structure. Every channel consists of two ends and a con-
straint that relates the timing and the contents of the data-flows at those ends.
Channel ends have one of two types: source ends accept data into their channels
(i.e., a source end of a channel connects to that channel’s data source/producer),
while sink ends dispense data out of their channels (i.e., a sink end of a channel
connects to that channel’s data sink/consumer). Reo makes no other assump-
tions about channels and allows, for instance, channels with two source ends.
Table 1 shows four common channels. Users of Reo may freely extend this set of
common channels by defining their own channels with custom semantics.

Every node has at least one coincident channel end. A node with no coincident
sink channel end is called a source node. A node with no coincident source channel
end is called a sink node. A node with both source and sink coincident channel
ends is called a mixed node. The set of all source nodes and sink nodes of a
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Syntax Semantics

e1 e2
Synchronously takes a datum d from its source end e1 and writes d to its
sink end e2.

e1 e2
Synchronously takes data from both its source ends and loses them.

e1 e2
Synchronously takes a datum d from its source end e1 and nondeterministi-
cally either writes d to its sink end e2 or loses d.

�
x

e1 e2
Asynchronously

[
takes a datum d from its source end e1 and stores d in a

buffer x
]
, then

[
writes d to its sink end e2 and clears x

]
.

Table 1: Graphical syntax and informal semantics of common channels

connector are collectively referred to as its boundary nodes. In Figure 1, we
distinguish connectors’ white boundary nodes from their shaded mixed nodes.

Every sink channel end coincident on a node serves as a data source for that
node. Analogously, every source channel end coincident on a node serves as a
data sink for that node. A source node of a connector connects to an output
port of a component, which will act as its data source. Similarly, a sink node of
a connector connects to an input port of a component, which will act as its data
sink. Source nodes permit put operations (for components to send data), while
sink nodes permit get operations (for components to receive data); a connector
uses its mixed nodes only for internally routing data.

Contrasting channels, all nodes have the same, fixed data-flow behavior: re-
peatedly, a node nondeterministically selects an available datum out of one of
its data sources and replicates this datum into each of its data sinks. A node’s
nondeterministic selection and its subsequent replication constitute one atomic
execution step; nodes cannot store, generate, or lose data. For a connector to
make a global execution step—usually instigated by pending i/o-operations—its
channels and its nodes must reach consensus about their combined behavior, to
guarantee mutual consistency of their local execution steps (e.g., a node should
not replicate a data item into a channel with an already full buffer). Subse-
quently, connector-wide data-flow emerges. A description of the behavior of the
connectors in Figure 1 appears elsewhere [10].

2.2 Constraint Automata

Although originally developed as a formal semantics of Reo [5], cas constitute a
general operational formalism for modeling the behavior of concurrent systems:
every ca models a component, which has a number of ports through which it
interacts with its environment. Often, we annotate ports with a direction of
data-flow (i.e., a component can use a port either for producing data or for
consuming data but not for both); in this paper, because these directions do
not matter to our current problem, we omit them. To formalize Reo’s semantics
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Fig. 2: Constraint automata for the channels in Table 1 (first three from the left),
for a mixed node with two incoming and one outgoing channel (fourth from the
left), and for two boundary nodes, each with either one incoming or one outgoing
channel (fifth from the left). The latter ca is defined not only over the names of
its coincident channel ends but also over its own name. (Components use node
names—not channel end names—to perform i/o-operations on.)

in terms of ca-based components, we view a channel as a component with two
ports (one for each of its two ends), while we view a node with n coincident sink
ends and m coincident source ends as a component with n+m ports. Then, we
can compositionally compute the ca for a connector by computing the grand
composition of the cas for its constituents. But first, we formally define cas.

Structurally, every ca consists of finite sets of states and transitions, which
model a component’s internal configurations and atomic execution steps. Every
transition has a label that consists of two elements: (i) a set, typically denoted
by P , containing the names of the ports that have synchronous data-flow in that
transition, called a synchronization constraint, and (ii) a logical formula, typi-
cally denoted by φ, that specifies which particular data may flow through which
of the ports in P , called a data constraint. For instance, the atomic data con-
straint d(p1) = d(p2) means that the same datum flows through ports p1 and p2;
the atomic data constraint > means that it does not matter which particular
data flow where. Let Dc denote a universal set of data constraints. More pre-
cisely, Dc serves as the carrier set in some Boolean algebra (Dc,∧,∨,¬,⊥,>),
including atoms of the form d(p1) = d(p2). The details of data constraints do not
matter in this paper, and therefore, we skip them. Let St denote the universal
set of states, let Port denote the universal set of ports, and let Dc(P ) denote
the set of data constraints in which only ports from P occur.

Definition 1. A constraint automaton is a tuple (Q,P all,−→, Q0), where Q ⊆
St is the state space, P all ⊆ Port is the set of known ports, −→ ⊆ Q× 2P

all ×
Dc(P all) × Q is the transition relation, and Q0 ⊆ Q are the initial states. Aut
is the universal set of constraint automata, ranged over by α.

Figure 2 shows example cas. Let St(α), Port(α), Tr(α), and Init(α) denote α’s
state space, its set of ports, its transition relation, and its initial states.
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Our behavioral equivalence in this paper is based on bisimulation. We define
this equivalence in two steps. First, we define simulation.

Definition 2. � ⊆ Aut× Aut× 2St×St is the relation defined as follows:



[[(q1, P, φ, q′1) ∈ Tr(α1)

and (q1, q2) ∈ R

]
implies

[[(q2, P, φ, q′2) ∈ Tr(α2)
and (q′1, q

′
2) ∈ R

]
for some q′2

]]

for all q1, q
′
1, q2, P, φ




and
[[
q1 ∈ Init(α1) implies

[[
q2 ∈ Init(α2) and (q1, q2) ∈ R

]

for some q2

]]
for all q1

]

and Port(α1) = Port(α2) and R ⊆ St(α1)× St(α2)

α1 �R α2

In words, α2 simulates α1—in which case α1 � α2—whenever we can relate the
states of α1 and α2 such that: (i) α2 can mimic every transition that α1 can make
in related states, and (ii) α2 can already perform such mimicry in any of α1’s
initial states. The definition of bisimulation now straightforwardly follows.

Definition 3. ' ⊆ Aut× Aut× 2St×St is the relation defined as follows:

α1 �R α2 and α2 �R-1 α1

α1 'R α2

We favor this definition of bisimilarity over its definition as the maximal bisim-
ulation on states, as we prefer emphasizing automata rather than their states.

To model component composition in terms of cas, we define the following
(synchronous) composition operation.

Definition 4. · ⊗ · : Aut× Aut→ Aut is the function defined as follows:

α1 ⊗ α2 =




St(α1)× St(α2),Port(α1) ∪ Port(α2),







(q1, q2),
P1 ∪ P2,
φ1 ∧ φ2,
(q′1, q

′
2)




Port(α1) ∩ P2 = Port(α2) ∩ P1

and (q1, P1, φ1, q
′
1) ∈ Tr(α1)

and (q2, P2, φ2, q
′
2) ∈ Tr(α2)




,

Init(α1)× Init(α2)




Essentially, the previous definition of ⊗ formalizes the idea that two compo-
nents can fire a transition together only if they agree on the involvement of their
shared ports. Our composition differs slightly from its original definition [5],
where Baier et al. encode the possibility for one ca to idle, while the other ca
makes a transition, explicitly in the definition of composition. Here, we prefer
the equivalent alternative of encoding the idling of components explicitly in their
cas—instead of in the definition of composition—through self-loop transitions
labeled with ∅,>. This has the advantage of a simpler definition of composition,
without losing expressiveness. We stipulate that every example ca that we show
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x = d(e6) ∧ d(e6) = d(Out)

(b) Composition

`′1

`′2

{Out},
x = d(Out)

(c) Comp. and abstr.

`1 : {In1, e1, e2, e5}, d(e1) = d(e2) ∧ d(e2) = d(e5) ∧ d(e5) = x′

`2 : {In2, e3, e4, e5}, d(e3) = d(e4) ∧ d(e4) = d(e5) ∧ d(e5) = x′
`′1 : {In1}, d(In1) = x′

`′2 : {In2}, d(In2) = x′

(d) Transition labels

Fig. 3: Composition and abstraction of LateAsyncMerger2 in Figure 1

has implicit self-loops for idling in each of their states. (In principle, our the-
ory for cas does not require self-loops; for modeling Reo, however, cas require
self-loops.) Figure 3 shows an example of composition. We adopt left-associative
notation for ⊗ and omit brackets whenever possible (e.g., we write α1⊗α2⊗α3

for (α1⊗α2)⊗α3). Similarly, we adopt left-associative notation for pairs of states
(e.g., we write (q1, q2, q3) for ((q1, q2), q3)). Behaviorally, bracketing is insignif-
icant, because ⊗ is associative/commutative modulo bisimulation. However, as
we reason also structurally about cas in this paper, bracketing matters.

To compute the formal semantics of a connector, we compute the grand
composition of the cas for its constituents using ⊗, in an iterative manner: for
an expression α1 ⊗ · · · ⊗ αn, we first compute α := α1 ⊗ α2, then α := α ⊗ α3,
then α := α ⊗ α4, and so on. We call every α ⊗ αi<n in this computation an
intermediate compound ; we call α⊗ αn the final compound.

Beside multiplication, Baier et al. defined another operation on constraint
automata: abstraction [5]. Abstraction removes ports from the observables of a
ca, possibly internalizing transitions (i.e., making those transitions unobservable
from the environment). In practice, abstraction can significantly reduce the size
of a ca, both in terms of states and transitions. Although not the main topic
of this paper, due to its practical relevance, we use abstraction in Section 5; its
formal definition appears in the technical report [11].

3 Problem

In ongoing work, we are developing a ca-based Reo-to-Java compiler; in recent
work, to study the effectiveness of one of our optimization techniques, we com-
pared the performance of the code generated by our compiler with and without
applying that technique [10]. Our comparison featured a number of k-parametric
families of connectors, where k controls the size of a coordinating connector
through its number of coordinated components. Figure 1 shows the k = 2 mem-
bers of the families with which we experimented. One can extend these k = 2
members to their k > 2 versions in a similar way as how we extended Fig-
ure 1a to Figure 1b. We selected these families because each of them exhibits
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Fig. 4: Computation times (y-axis) for nine k-parametric families, for 2 ≤ k ≤
64 (x-axis). Time is measured in seconds, except for EarlyAsyncReplicatork and
LateAsyncMergerk, where time is measured in milliseconds.

different behavior in terms of synchrony, exclusion, nondeterminism, direction,
sequentiality, and parallelism, thereby aiming for a balanced comparison.

Although we focused our attention primarily on the performance of the gen-
erated code, we also made some observations about the performance of our com-
piler itself. Without applying the optimization technique under investigation, our
compiler uses the previously explained iterative approach to compute the grand
composition of the cas for a connector’s constituents. Figure 4 shows the compu-
tation times measured for the k-parametric families under study, for 2 ≤ k ≤ 64,
averaged over sixteen runs.3 For six families, the compiler exhausted its avail-
able resources (five minutes of time or 2 gb of heap space) long before reach-
ing k = 64. The cause: “rapid”—at least exponential—growth in k. For four
of these families, we have a good explanation for this phenomenon: the grand
compositions computed for EarlyAsyncMergerk, EarlyAsyncBarrierMergerk, Late-

3 We recollected the data shown in Figure 4 specifically for this paper, but we made
our initial observations based on our previous data [10].
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Fig. 5: Grand composition of the cas for a cycle of three buffered channels (of
capacity 1), closed by a synchronous channel. State labels xyz indicate the empti-
ness/fullness of buffers, where x refers to the first buffer, y to the second buffer,
and z to the third buffer; we omitted transition labels to avoid clutter.

AsyncReplicatork, and LateAsyncRouterk grow exponentially in k, such that the
amount of resources required to compute those grand compositions logically
also grows at least exponentially in k. For the other two families, in contrast,
our measurements seem more difficult to explain: the grand compositions com-
puted for EarlyAsyncOutSequencerk and Lockk grow only linearly in k, making
an exponential growth in resource requirements rather surprising.

Analysis of the intermediate compounds of EarlyAsyncOutSequencerk and
Lockk taught us the following: even if final compounds grow linearly in k, their in-
termediate compounds, as computed by the iterative approach, may nevertheless
grow exponentially in k. We can explain this easiest for EarlyAsyncOutSequencerk
(cf. Figure 1e), through the size of its state space, but the same argument applies
to Lockk. EarlyAsyncOutSequencerk consists of a subconnector that, in turn, con-
sists of a cycle of k buffered channels (of capacity 1). The first buffered channel
initially contains a dummy datum � (i.e., its actual value does not matter); the
other buffered channels initially contain nothing. As in the literature [1,2], we
call this subconnector Sequencerk. Because no new data can flow into Sequencerk,
only � cycles through the buffers—ad infinitum—such that only one buffer holds
a datum at any time. Consequently, the ca for Sequencerk has only k states, each
of which represents the presence of � in exactly one of its k buffers.

However, if we compute the grand composition of the local cas for Se-
quencerk’s constituents using the iterative approach, we “close the cycle” only
with the very last application of ⊗: until then, this soon-to-become-cycle still
appears an open-ended chain of buffered channels. Because new data can freely
flow into such an open-ended chain, this chain can have a datum in any buffer
at any time. Consequently, the ca for the largest chain has 2k states. Only when
we compose this penultimate compound with the last local ca, the state space
collapses into k states, as we “find out” that the open-ended chain actually forms
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a cycle with exactly one datum. Because Sequencerk constitutes EarlyAsyncOut-
Sequencerk, also EarlyAsyncOutSequencerk suffers from this problem.

Figure 5 shows our previous analysis in pictures. Most interestingly, the in-
termediate compounds in Figure 5 (i.e., the first three automata from the left)
contain progressively more states with the following peculiar property: they are
reachable from an initial state in those intermediate compounds, called interme-
diate-reachability, but neither those states themselves nor any compound state
that they constitute, are reachable in the final compound, called final-unreacha-
bility. Thus, by using the iterative approach for computing a grand composition,
we may spend exponentially many resources on generating a state space that we
nearly completely discard in the end. This seems the heart of our problem.

4 Solution

The main idea to solve our problem is to compute grand compositions state-by-
state, instead of iteratively. In this new approach, we start computing a grand
composition from its straightforwardly computable set of initial states. Subse-
quently, we expand each of those states by computing their outgoing compound
transitions. These compound transitions enter new compound states, which we
subsequently recursively expand. As such, we compute only the reachable states
of the final compound, avoiding the unnecessary computation of intermediate-
ly-reachable-but-finally-unreachable states. Easy to explain, the main challenge
we faced consisted of finding an elegant formalization of this state-by-state
approach—including an algorithm—amenable to formal reasoning and proofs.
Such proofs are crucially important in the correctness-by-construction principle
advocated in rigorous system design for component-based software engineering.

4.1 State-based Decomposition/Recomposition

We start by formalizing the state-based decomposition of a ca into its per-state
“subautomata” and the recomposition of that ca from those decompositions.
Let σ denote the selection function (cf. relational algebra) that consumes as input
a transition relation −→ and a state q and produces as output the subrelation
of −→ consisting of precisely the transitions in −→ that exit q.

Definition 5. σ : 2St×2
Port×Dc×St×St→ 2St×2

Port×Dc×St is the function defined
as follows:

σq(−→) = {(q, P̂ , φ̂, q̂′) | q P̂ ,φ̂−−→ q̂′}
Next, let ·〈·〉 denote the (state-based) decomposition function that consumes as
input an automaton α and a state q and produces as ouput a ca consisting of
exactly the same set of states, set of ports, and set of initial states, and with a
transition relation consisting of precisely the transitions in α that exit q.

Definition 6. ·〈·〉 : Aut× St→ Aut is the function defined as follows:

α〈q〉 = (St(α),Port(α), σq(Tr(α)), Init(α))
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We call q the significant state in α〈q〉. The following lemma states that de-
composition distributes over composition: instead of first computing the grand
composition of n local cas and then decomposing the resulting global ca with
respect to a global state, we can equally first decompose every local ca with re-
spect to its local state and then compute the grand composition of the resulting
per-state decompositions. A detailed proof appears in the technical report [11].

Lemma 1. (α1 ⊗ · · · ⊗ αn)〈(q1, . . . , qn)〉 = α1〈q1〉 ⊗ · · · ⊗ αn〈qn〉
The previous definitions (and lemma) cover the essentials of state-based de-

composition; in the rest of this subsection, we discuss recomposition. Let
⊔

denote a recomposition function that consumes as input a set of cas and pro-
duces as output a ca by taking the grand union of the sets of states, sets of
ports, sets of transitions, and sets of initial states.

Definition 7.
⊔ · : 2Aut → Aut is the function defined as follows:

⊔
A =(⋃{St(α) | α ∈ A},⋃{Port(α) | α ∈ A},⋃{Tr(α) | α ∈ A},⋃{Init(α) | α ∈ A}

)

The following lemma states that a ca equals the recomposition of its state-based
decompositions. A detailed proof appears in the technical report [11].

Lemma 2. α =
⊔{α〈q〉 | q ∈ St(α)}

The following theorem states the correctness of the state-by-state approach for
grand compositions, as outlined in the beginning of this section. Roughly, it
states that the grand composition of n local cas equals the recomposition of
that grand composition’s state-based decompositions. More precisely, however,
it states that this grand composition equals the recomposition of the composition
of state-based decompositions of the local cas. This is a subtle but important
point: it means that to compute the grand composition of n local cas, we only
need to compute compositions of state-based decompositions of those local cas.
We further clarify this point in the next subsection.

Theorem 1.

α1 ⊗ · · · ⊗ αn =
⊔{α1〈q1〉 ⊗ · · · ⊗ αn〈qn〉 | (q1, . . . , qn) ∈ St(α1)× · · · × St(αn)}

Proof (sketch). By applying Lemma 2, Definition 4 of ⊗, and Lemma 1. A de-
tailed proof appears in the technical report [11]. ut

4.2 Algorithm

Having formalized de/recomposition, we can now formulate an algorithm for
computing the reachable fragment of grand compositions. First, we formalize
reachability. We call a state q reachable iff q is an initial state or a finite sequence
of k transitions exists that form a path from some initial state to q. Let Reach
denote the reachability function that consumes as input a ca and produces as
output its reachable states.
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{
true

}

A := ∅
A′ := {α1〈q1〉 ⊗ · · · ⊗ αn〈qn〉 | (q1, . . . , qn) ∈ Init(α1)× · · · × Init(αn)}
while α ∈ A′ \A for some α do

A := A ∪ {α}
A′ := A′ ∪

{
α1〈q′1〉 ⊗ · · · ⊗ αn〈q′n〉 (q, P, φ, (q′1, . . . , q

′
n)) ∈ Tr(α)

}

end while{⊔
A = bα1 ⊗ · · · ⊗ αnc

}

Fig. 6: Algorithm for computing the grand composition of n autamata using the
state-by-state approach

Definition 8. Reach : Aut→ 2St is the function defined as follows:

Reach(α) = Init(α) ∪
{
qk

(q1, P1, φ1, q2), . . . , (qk−1, Pk−1, φk−1, qk) ∈ Tr(α)
and q1 ∈ Init(α)

}

Next, let b·c denote the floor function, which takes as input a ca and produces as
output an equivalent—proven below—ca for its reachable states (i.e., the floor
function “rounds” a ca “down” to its reachable fragment).

Definition 9. b·c : Aut→ Aut is the function defined as follows:

bαc =
⊔{α〈q〉 | q ∈ Reach(α)}

The following lemmas state that a ca simulates its floored version and vice versa.
Detailed proofs appear in the technical report [11].

Lemma 3. α �{(q,q)|q∈Reach(α)} bαc

Lemma 4. bαc �{(q,q)|q∈Reach(α)}-1 α

From these two lemmas, we can immediately conclude the following theorem,
which states that a ca and its floored version are bisimulation equivalent.

Theorem 2. α '{(q,q)|q∈Reach(α)} bαc

Proof (sketch). By applying Lemmas 3 and 4 and Definition 3 of '. A detailed
proof appears in the technical report [11]. ut

Figure 6 shows an algorithm for computing the grand composition of n local
cas using the state-by-state approach, including a precondition and a postcon-
dition, formulated in terms of de/recomposition and reachability. This algorithm
works as described in the beginning of this section. A denotes the subset of so-
far computed state-based decompositions whose significant state the algorithm
already has expanded (i.e., the algorithm has processed all cas in A). A′, in con-
trast, denotes the full set of so-far computed state-based decompositions (i.e., A′

contains A such that A′ \ A contains the cas that the algorithm still needs to
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{
true

}
{
invar

[A′ := {α1〈q1〉 ⊗ · · · ⊗ αn〈qn〉 | (q1, . . . , qn) ∈ Init(α1)× · · · × Init(αn)}]
[A := ∅]

}

A := ∅
A′ := {α1〈q1〉 ⊗ · · · ⊗ αn〈qn〉 | (q1, . . . , qn) ∈ Init(α1)× · · · × Init(αn)}{
invar

}

while α ∈ A′ \A for some α do{
α ∈ A′ \A and invar and |St(α1 ⊗ · · · ⊗ αn)| − |A| = z

}
{[

invar and 0 ≤ |St(α1 ⊗ · · · ⊗ αn)| − |A| < z
]

[A′ := A′ ∪
{
α1〈q′1〉 ⊗ · · · ⊗ αn〈q′n〉 (q, P, φ, (q′1, . . . , q

′
n)) ∈ Tr(α)

}
]

[A := A ∪ {α}]
}

A := A ∪ {α}
A′ := A′ ∪

{
α1〈q′1〉 ⊗ · · · ⊗ αn〈q′n〉 (q, P, φ, (q′1, . . . , q

′
n)) ∈ Tr(α)

}
{
invar and 0 ≤ |St(α1 ⊗ · · · ⊗ αn)| − |A| < z

}

end while{
invar and

[
α /∈ A′ \A for all α

]}
{⊔

A = bα1 ⊗ · · · ⊗ αnc
}

Fig. 7: Algorithm for computing the grand composition of n autamata using the
state-by-state approach, annotated with assertions for total correctness

invar: {(α1 ⊗ · · · ⊗ αn)〈q〉 | q ∈ Init(α1 ⊗ · · · ⊗ αn)} ⊆ A ∪ (A′ \A)
and A,A′ ⊆ {(α1 ⊗ · · · ⊗ αn)〈q〉 | q ∈ St(α1 ⊗ · · · ⊗ αn)}

and
[



α ∈ A ∪ (A′ \A) implies

[[α = (α1 ⊗ · · · ⊗ αn)〈q〉
and q ∈ Reach(α1 ⊗ · · · ⊗ αn)

]
for some q

]


 for all α

]

and
[



[
α ∈ A and (q, P, φ, q′) ∈ Tr(α)

]
implies

[[α′ = (α1 ⊗ · · · ⊗ αn)〈q′〉
and α′ ∈ A ∪ (A′ \A)

]
for some α′

]


 for all α, q, q′, P, φ

]

Fig. 8: Addendum to Figure 7

process). After the algorithm terminates, A contains a number of state-based
decompositions. The postcondition subsequently asserts that the recomposition
of the cas in A equals the reachable fragment of the grand composition.

Figure 7 shows the algorithm in Figure 6 annotated with assertions for total
correctness; Figure 8 shows the loop invariant. This invariant consists of four
conjuncts. The first conjunct states that A∪A′ contains the initial states in the
grand composition. The second conjunct states that the A and A′ contain only
state-based decompositions of the grand composition. The third conjunct states
that every ca in A∪A′ is a state-based decomposition of the grand composition,
with respect to some reachable state in that grand composition. The fourth
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conjunct states that if a ca in A has a transition entering a (global) state q′, A∪
A′ contains a decomposition of the grand composition with respect to q′. As
soon as the loop terminates, the invariant and the negated loop condition imply
that every ca in A has a reachable significant state (“soundness”; consequence
of the third conjunct) and that, in fact, A contains a ca for every reachable state
(“completeness”; consequence of the fourth conjunct).

Theorem 3. The algorithm in Figure 6 is correct.

Proof (sketch). By the assertions in Figure 7 and the axioms of Hoare logic. A
detailed proof appears in the technical report [11].

Note that the invariant refers only to decompositions of the global ca with
respect to a global state (e.g., (α1 ⊗ · · · ⊗ αn)〈q〉 for a global state q), whereas
the algorithm refers only to decompositions of local cas with respect to local
states (e.g., α1〈q1〉 ⊗ · · · ⊗ αn〈qn〉 for local states q1, . . . , qn). Recognizing this
difference is important, because it highlights the main advantage of the state-by-
state approach: by using only decompositions of local cas, the algorithm never
needs to compute any intermediate compounds, so avoiding a potential source
of exponential resource requirements.

5 Implementation, Evaluation, and Discussion

We implemented the state-by-state approach for computing grand compositions
as an extension to our ca-based Reo-to-Java compiler. This compiler is imple-
mented in Java and extends the Ect, a collection of plugins for Eclipse that
serve as an ide for Reo (see http://reo.project.cwi.nl).

To evaluate the performance of the state-by-state approach in practice, we
experimented with the same k-parameteric families of connectors as those in
Figure 4. Because not only composition but also abstraction play an impor-
tant role in practice (as mentioned at the end of Section 2), we consider three
composition–abstraction approaches:

– Alternating iterative approach
Variant of the iterative approach where we abstract away all internal ports
for mixed nodes (which do not contribute to the observable behavior of
a connector) in intermediate compounds directly after their computation;
this approach alternates between composition and abstraction. It has the
advantage that intermediate compounds remain small (i.e., abstraction of
internal ports eliminates internal transitions and collapses states together),
thereby reducing overall resource consumption (i.e., generally, composing
smaller cas requires fewer resources than composing larger cas).

– Phased iterative approach
Variant of the iterative approach where we abstract away all internal ports
only in the final compound and not in intermediate compounds.
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Fig. 9: Computation times (y-axis) for nine k-parametric families, for 2 ≤ k ≤ 64
(x-axis), by applying the alternating iterative approach (blue lines), the phased
iterative approach before abstraction (dotted-red lines) and after (solid-red
lines), and the phased state-by-state approach before abstraction (dotted-yellow
lines) and after (solid-yellow lines). Time is measured in seconds, except for Early-
AsyncReplicatork and LateAsyncMergerk, where time is measured in milliseconds.
Page-size versions of these plots appear in the technical report [11].

– Phased state-by-state approach
Variant of the state-by-state approach where we abstract away all internal
ports only after the composition phase.

Figure 9 shows the computation times that we measured for the various ap-
proaches, connectors, and values of 2 ≤ k ≤ 64. We set a timeout of five minutes
and bounded the size of the heap at 2 gb.

The four families whose grand compositions grow exponentially in k (i.e., Ear-
lyAsyncBarrierMergerk, EarlyAsyncMergerk, LateAsyncReplicatork, and LateAsync-
Routerk) logically provoke exponential growth in resource requirements not only
in the iterative approaches (as already observed in Section 3) but also in the
phased state-by-state approach. Still, the phased state-by-state approach, per-
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forms worse than the alternating iterative approach (at least for EarlyAsyncBar-
rierMergerk and EarlyAsyncMergerk).

For EarlyAsyncOutSequencerk and Lockk, the phased state-by-state approach
has substantially better performance: whereas both the alternating and the
phased iterative approaches fail for k > 14 (because these approaches require too
much resources to successfully complete their computation), the phased state-
by-state approach succeeds for all values of k under study. (These two families
formed the main motivation for doing the work reported on in this paper.)

For EarlyAsyncReplicatork and LateAsyncMergerk, the phased state-by-state
approach seems roughly twice as slow as the iterative approaches. A mundane
reason may be that we have not optimized our implementation of the state-
by-state approach as aggressively as the iterative approach (which has been
under development for several years). Another reason may be that the state-by-
state approach is not as cache/memory-friendly as the iterative approach (i.e.,
locality issues), as the state-by-state approach continuously accesses all local
cas. Moreover—and more seriously—Alternatork forms a problematic case for
the phased state-by-state approach. Indeed, the alternating iterative approach
performs much better, exactly because it abstracts away internal ports as early as
possible. Interestingly, early abstraction does not have such a significant effect
for all families of connectors under study. This has to do with the particular
structure of Alternatork, explained in detail elsewhere and considered beyond the
scope of this paper [9]. Here, the important point is that, although the phased
state-by-state approach dramatically improves performance in some cases, it is
not a silver bullet. One piece of future work, therefore, concerns the development
of heuristics about which composition approach we should apply when. Another
piece of future work concerns the investigation of a variant of the state-by-state
approach with early abstraction similar to the alternating incremental approach.
The main challenge with this is that to perform abstraction, we require certain
information that, in the state-by-state approach, seems to become available only
once we have completed computing the grand composition. Therefore, we need
to develop clever techniques to obtain this kind of information earlier on.

6 Related Work

The main inspiration for our solution in this paper came from Proença’s dis-
tributed Reo engine [14]. On input of a connector, this engine starts an actor
for each of that connector’s constituents. Each of these actors has some kind of
local automaton (not quite a ca but the differences and details do not matter
here) for its corresponding node/channel. Together, the actors run a distributed
consensus algorithm to synchronize their behavior, by composing their local be-
haviors into one consistent global behavior. As part of this consensus algorithm,
actors exchange data structures with information about their current state and
that state’s outgoing transitions (called frontiers by Proença). By doing so, the
actors effectively compute the composition of their automata at run-time, and
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only for their reachable states. Our state-by-state approach for computing grand
compositions effectively does a similar computation at compile-time.

Some literature exists on algorithms for computing the composition of cas.
For instance, Ghassemi et al. documented that the order in which a tool composes
the cas in a grand composition matters [6]: although any order yields the same
final compound (because composition exhibits associativity and commutativity),
different orders may yield diffent intermediate compounds. Some orders may give
rise to relatively large intermediate compounds, with high resource requirements
as a result, while other orders may keep intermediate compounds small. Choosing
the right order, therefore, matters significantly in practice. In the same paper,
Ghassemi et al. also briefly mention the idea of computing the composition
of two cas in a state-by-state approach, but they do not generalize this to
arbitrary grand compositions as we do in this paper. Pourvatan and Rouhy also
worked on an algorithm for efficiently computing the composition of two cas [13].
Their approach consists of a special algebraic representation of cas, including
a reformulation of the composition operation for this representation. Pourvatan
and Rouhy claim that their approach computes composition twice as fast as the
approach by Ghassemi et al., but evidence remains limited.

State expansion based on reachability also surfaces in what Hopcroft et al.
call “lazy evaluation” of subsets in the powerset construction for determinizing a
nondeterministic finite automaton in classical automata theory [7]. The fact that
we need to compose cas during the expansion of global states—and explicitly do
not want to compute the grand composition beforehand—makes our situation
more complex, though. Lemma 1 plays a key role in this respect.

7 Conclusion

Our performance evaluation shows that our new approach for computing grand
compositions substantially improves the problematic cases of the existing ap-
proach. However, in other cases, our existing approach outperformed our new
approach. In future work, we want to investigate heuristics for deciding which
of these two approaches we should use when.

Constraint automata comprise a general operational formalism for modeling
the behavior of concurrent systems, where every ca models a component. To
analyze systems modeled as cas, efficiently computing the grand composition of
those cas is very important. This makes our work a relevant advancement to the
theory and practice of component-based software engineering. In this paper, we
focused on the “coordination subsystems”—connectors—among the components.
When expressed in Reo, we can compositionally compute connector behavior
in terms of cas. This enables both verification (e.g., model checking [3,4,12])
and compilation (i.e., code generation [9,10]), whose combination subsequently
facilitates a correctness-by-construction approach to component-based software
engineering—one of the hallmarks in Sifakis’ rigorous system design [15].

We can use our new approach for computing grand compositions also be-
yond Reo, whenever not only the coordinating connectors’ semantics exist as
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cas but also the semantics of their coordinated components. For instance, the
combination of cas and Reo has been used to model and verify a simple railway
network [3], a biomedical sensor network [4], and an industrial communication
platform [12]. To model check temporal logic properties of the composition of the
components and connectors of such systems (e.g., the composition never dead-
locks), we need to compute the grand composition of the cas for all components
and connectors. Here too, our new approach for computing grand compositions
constitutes a valuable alternative to the existing approach. In fact, the abstract
approach of computing compound global behavior out of primitive local behavior
under a “reachability-based” strategy, to avoid excessive intermediate resource
consumption, does not depend on cas and can be applied also to other models.
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4. Baier, C., Blechmann, T., Klein, J., Klüppelholz, S., Leister, W.: Design and Ver-
ification of Systems with Exogenous Coordination Using Vereofy. In: ISoLA 2010,
LNCS, vol. 6416, pp. 97–111 (2010)

5. Baier, C., Sirjani, M., Arbab, F., Rutten, J.: Modeling component connectors in
Reo by constraint automata. SCP 61(2), 75–113 (2006)

6. Ghassemi, F., Tasharofi, S., Sirjani, M.: Automated Mapping of Reo Circuits to
Constraint Automata. In: FSEN 2005, ENTCS, vol. 159, pp. 99–115 (2006)

7. Hopcroft, J., Motwani, R., Ullman, J.: Introduction to Automata Theory, Lan-
guages, and Computation (2001)

8. Jongmans, S.S., Arbab, F.: Overview of Thirty Semantic Formalisms for Reo. Sci-
entific Annals of Computer Science 22(1), 201–251 (2012)

9. Jongmans, S.S., Arbab, F.: Toward Sequentializing Overparallelized Protocol Code.
In: ICE 2014, EPTCS, vol. 166, pp. 38–44 (2014)

10. Jongmans, S.S., Arbab, F.: Can High Throughput Atone for High Latency in
Compiler-Generated Protocol Code? In: FSEN 2015. LNCS (in press)
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